A new and spontaneous animal model for ankylosing spondylitis is found in cynomolgus monkeys.
Animal model
Ankylosing spondylitis
Cynomolgus monkeys
Family aggregation analysis
Hematological testing
Pathological analysis
Radiographic examination
Spontaneous
Journal
Arthritis research & therapy
ISSN: 1478-6362
Titre abrégé: Arthritis Res Ther
Pays: England
ID NLM: 101154438
Informations de publication
Date de publication:
03 01 2022
03 01 2022
Historique:
received:
31
05
2021
accepted:
11
11
2021
entrez:
4
1
2022
pubmed:
5
1
2022
medline:
11
3
2022
Statut:
epublish
Résumé
Ankylosing spondylitis is a progressive, disabling joint disease that affects millions worldwide. Given its unclear etiology, studies of ankylosing spondylitis relied heavily on drug-induced or transgenic rodent models which retain only partial clinical features. There is obviously a lack of a useful disease model to conduct comprehensive mechanistic studies. We followed a group of cynomolgus monkeys having joint lesions reported of spinal stiffness for 2 years by conducting hematological testing, radiographic examination, family aggregation analysis, pathological analysis, and genetic testing. The results confirmed that these diseased animals suffered from spontaneous ankylosing spondylitis with clinical features recapitulating human ankylosing spondylitis disease progression, manifested by pathological changes and biochemical indicators similar to that of ankylosing spondylitis patients. The study offers a promising non-human primate model for spontaneous ankylosing spondylitis which may serve as an excellent substitute for its pre-clinical research.
Sections du résumé
BACKGROUND
Ankylosing spondylitis is a progressive, disabling joint disease that affects millions worldwide. Given its unclear etiology, studies of ankylosing spondylitis relied heavily on drug-induced or transgenic rodent models which retain only partial clinical features. There is obviously a lack of a useful disease model to conduct comprehensive mechanistic studies.
METHODS
We followed a group of cynomolgus monkeys having joint lesions reported of spinal stiffness for 2 years by conducting hematological testing, radiographic examination, family aggregation analysis, pathological analysis, and genetic testing.
RESULTS
The results confirmed that these diseased animals suffered from spontaneous ankylosing spondylitis with clinical features recapitulating human ankylosing spondylitis disease progression, manifested by pathological changes and biochemical indicators similar to that of ankylosing spondylitis patients.
CONCLUSION
The study offers a promising non-human primate model for spontaneous ankylosing spondylitis which may serve as an excellent substitute for its pre-clinical research.
Identifiants
pubmed: 34980262
doi: 10.1186/s13075-021-02679-5
pii: 10.1186/s13075-021-02679-5
pmc: PMC8722021
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1Informations de copyright
© 2021. The Author(s).
Références
Br Med J. 1973 Apr 28;2(5860):235-7
pubmed: 4144722
Immunogenetics. 2013 May;65(5):371-86
pubmed: 23417323
Ann Rheum Dis. 2009 Jun;68(6):1003-10
pubmed: 18625624
Nat Genet. 2013 Jul;45(7):730-8
pubmed: 23749187
J Autoimmun. 2016 Jun;70:12-21
pubmed: 27036372
Neurology. 2014 Oct 21;83(17):1500-7
pubmed: 25253754
Nat Genet. 2012 Jul 01;44(8):890-4
pubmed: 22751097
Ann Rheum Dis. 1955 Mar;14(1):77-83
pubmed: 14362358
Nat Rev Rheumatol. 2018 Aug;14(8):453-466
pubmed: 30006601
Eur Arch Otorhinolaryngol. 2016 Nov;273(11):3663-3672
pubmed: 27034281
Autoimmun Rev. 2010 Mar;9(5):A288-92
pubmed: 19944780
Pathol Res Pract. 1998;194(11):797-803
pubmed: 9842639
Ann Rheum Dis. 2005 Jan;64(1):127-9
pubmed: 15051621
Nat Rev Rheumatol. 2010 Jul;6(7):399-405
pubmed: 20517295
Arthritis Rheum. 2000 Sep;43(9):2011-24
pubmed: 11014351
Ann Rheum Dis. 2005 Jul;64(7):981-7
pubmed: 15640265
Mol Med Rep. 2015 Jun;11(6):4482-8
pubmed: 25632965
J Immunol. 2017 Nov 15;199(10):3679-3690
pubmed: 29021373
Nat Genet. 2010 Feb;42(2):123-7
pubmed: 20062062
Front Immunol. 2018 Nov 16;9:2668
pubmed: 30505307
Ann Rheum Dis. 1980 Dec;39(6):545-9
pubmed: 7458430
Brain Behav Immun. 2015 Feb;44:167-175
pubmed: 25305591
Arthritis Rheumatol. 2014 Oct;66(10):2773-9
pubmed: 25048876
Nat Genet. 2011 Jul 10;43(8):761-7
pubmed: 21743469
Nat Genet. 2011 Dec 04;44(1):73-7
pubmed: 22138694
Arthritis Res Ther. 2015 Jul 17;17:170
pubmed: 26123554
Nat Genet. 2007 Nov;39(11):1329-37
pubmed: 17952073
J Neuroimmunol. 2010 Oct 8;227(1-2):162-6
pubmed: 20598377
Immunogenetics. 2007 May;59(5):367-75
pubmed: 17334754
Lancet. 2007 Apr 21;369(9570):1379-1390
pubmed: 17448825
Arthritis Rheum. 1997 Oct;40(10):1823-8
pubmed: 9336417
Sci Rep. 2018 Aug 20;8(1):12464
pubmed: 30127455
Ann Rheum Dis. 2014 Dec;73(12):2137-43
pubmed: 23956246
Arthritis Rheumatol. 2014 Jul;66(7):1745-54
pubmed: 24574301
Br J Rheumatol. 1994 Oct;33(10):927-31
pubmed: 7921752
Ann Clin Lab Sci. 2018 May;48(3):301-307
pubmed: 29970432
Int J Inflam. 2013;2013:501653
pubmed: 23970995
Cell. 1990 Nov 30;63(5):1099-112
pubmed: 2257626
Ann Rheum Dis. 2000 Nov;59(11):883-6
pubmed: 11053066
J Exp Med. 1995 Oct 1;182(4):1153-8
pubmed: 7561688
Nat Rev Rheumatol. 2017 Jun;13(6):359-367
pubmed: 28446810
J Rheumatol. 1989 Jan;16(1):60-6
pubmed: 2541245