G protein-coupled estrogen receptor stimulates human trophoblast cell invasion via YAP-mediated ANGPTL4 expression.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
12 11 2021
Historique:
received: 31 05 2021
accepted: 25 10 2021
entrez: 13 11 2021
pubmed: 14 11 2021
medline: 21 12 2021
Statut: epublish

Résumé

Insufficient invasion of trophoblast cells into the uterine decidua is associated with preeclampsia (PE). G protein-coupled estrogen receptor (GPER) is a membrane estrogen receptor involved in non-genomic estrogen signaling. GPER is expressed in human trophoblast cells and downregulated GPER levels are noted in PE. However, to date, the role of GPER in trophoblast cells remains largely unknown. Here, we applied RNA sequencing (RNA-seq) to HTR-8/SVneo human trophoblast cells in response to G1, an agonist of GPER, and identified angiopoietin-like 4 (ANGPTL4) as a target gene of GPER. Treatment of trophoblast cells with G1 or 17β-estradiol (E2) activated Yes-associated protein (YAP), the major downstream effector of the Hippo pathway, via GPER but in a mammalian STE20-like protein kinase 1 (MST1)-independent manner. Using pharmacological inhibitors as well as loss- and gain-of-function approaches, our results revealed that YAP activation was required for GPER-stimulated ANGPTL4 expression. Transwell invasion assays demonstrated that activation of GPER-induced ANGPTL4 promoted cell invasion. In addition, the expression levels of GPER, YAP, and ANGPTL4 were downregulated in the placenta of patients with PE. Our findings reveal a mechanism by which GPER exerts its stimulatory effect on human trophoblast cell invasion by upregulating YAP-mediated ANGPTL4 expression.

Identifiants

pubmed: 34773076
doi: 10.1038/s42003-021-02816-5
pii: 10.1038/s42003-021-02816-5
pmc: PMC8589964
doi:

Substances chimiques

ANGPTL1 protein, human 0
Angiopoietin-Like Protein 1 0
Cell Cycle Proteins 0
GPER1 protein, human 0
Receptors, Estrogen 0
Receptors, G-Protein-Coupled 0
Transcription Factors 0
YY1AP1 protein, human 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1285

Subventions

Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 32050410302
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 32070848

Informations de copyright

© 2021. The Author(s).

Références

La Marca, A., Giulini, S., Orvieto, R., De Leo, V. & Volpe, A. Anti-Mullerian hormone concentrations in maternal serum during pregnancy. Hum. Reprod. 20, 1569–1572 (2005).
pubmed: 15734752 doi: 10.1093/humrep/deh819
Schindler, A. E. Endocrinology of pregnancy: consequences for the diagnosis and treatment of pregnancy disorders. J. Steroid Biochem. Mol. Biol. 97, 386–388 (2005).
pubmed: 16216491 doi: 10.1016/j.jsbmb.2005.08.006
Heldring, N. et al. Estrogen receptors: how do they signal and what are their targets. Physiological Rev. 87, 905–931 (2007).
doi: 10.1152/physrev.00026.2006
Olde, B. & Leeb-Lundberg, L. M. GPR30/GPER1: searching for a role in estrogen physiology. Trends Endocrinol. Metab.: TEM 20, 409–416 (2009).
pubmed: 19734054 doi: 10.1016/j.tem.2009.04.006
Prossnitz, E. R. & Arterburn, J. B. International union of basic and clinical pharmacology. XCVII. G protein-coupled estrogen receptor and its pharmacologic modulators. Pharmacol. Rev. 67, 505–540 (2015).
pubmed: 26023144 pmcid: 4485017 doi: 10.1124/pr.114.009712
Prossnitz, E. R. & Barton, M. The G-protein-coupled estrogen receptor GPER in health and disease. Nat. Rev. Endocrinol. 7, 715–726 (2011).
pubmed: 21844907 pmcid: 3474542 doi: 10.1038/nrendo.2011.122
Rouhimoghadam, M., Lu, A. S., Salem, A. K. & Filardo, E. J. Therapeutic perspectives on the modulation of G-protein coupled estrogen receptor, GPER, function. Front. Endocrinol. 11, 591217 (2020).
doi: 10.3389/fendo.2020.591217
Malassine, A. & Cronier, L. Hormones and human trophoblast differentiation: a review. Endocrine 19, 3–11 (2002).
pubmed: 12583598 doi: 10.1385/ENDO:19:1:3
Evain-Brion, D. & Malassine, A. Human placenta as an endocrine organ. Growth Horm. IGF Res. 13, S34–S37 (2003).
pubmed: 12914725 doi: 10.1016/S1096-6374(03)00053-4
Aplin, J. D. Implantation, trophoblast differentiation and haemochorial placentation: mechanistic evidence in vivo and in vitro. J. Cell Sci. 99, 681–692 (1991).
pubmed: 1769999 doi: 10.1242/jcs.99.4.681
Chaddha, V., Viero, S., Huppertz, B. & Kingdom, J. Developmental biology of the placenta and the origins of placental insufficiency. Semin. Fetal Neonatal Med. 9, 357–369 (2004).
pubmed: 15691771 doi: 10.1016/j.siny.2004.03.006
Lim, K. H. et al. Human cytotrophoblast differentiation/invasion is abnormal in pre-eclampsia. Am. J. Pathol. 151, 1809–1818 (1997).
pubmed: 9403732 pmcid: 1858365
Steegers, E. A., von Dadelszen, P., Duvekot, J. J. & Pijnenborg, R. Pre-eclampsia. Lancet 376, 631–644 (2010).
pubmed: 20598363 doi: 10.1016/S0140-6736(10)60279-6
Berkane, N. et al. From pregnancy to preeclampsia: a key role for estrogens. Endocr. Rev. 38, 123–144 (2017).
pubmed: 28323944 doi: 10.1210/er.2016-1065
Carmeci, C., Thompson, D. A., Ring, H. Z., Francke, U. & Weigel, R. J. Identification of a gene (GPR30) with homology to the G-protein-coupled receptor superfamily associated with estrogen receptor expression in breast cancer. Genomics 45, 607–617 (1997).
pubmed: 9367686 doi: 10.1006/geno.1997.4972
Feng, X. et al. Association of a reduction of Gprotein coupled receptor 30 expression and the pathogenesis of preeclampsia. Mol. Med. Rep. 16, 5997–6003 (2017).
pubmed: 28849224 pmcid: 5865791 doi: 10.3892/mmr.2017.7341
Tong, C. et al. G protein-coupled receptor 30 regulates trophoblast invasion and its deficiency is associated with preeclampsia. J. Hypertension 34, 710–718 (2016).
doi: 10.1097/HJH.0000000000000844
Bologa, C. G. et al. Virtual and biomolecular screening converge on a selective agonist for GPR30. Nat. Chem. Biol. 2, 207–212 (2006).
pubmed: 16520733 doi: 10.1038/nchembio775
Zhu, P., Goh, Y. Y., Chin, H. F., Kersten, S. & Tan, N. S. Angiopoietin-like 4: a decade of research. Biosci. Rep. 32, 211–219 (2012).
pubmed: 22458843 doi: 10.1042/BSR20110102
Aryal, B., Price, N. L., Suarez, Y. & Fernandez-Hernando, C. ANGPTL4 in metabolic and cardiovascular disease. Trends Mol. Med. 25, 723–734 (2019).
pubmed: 31235370 pmcid: 6779329 doi: 10.1016/j.molmed.2019.05.010
Tan, M. J., Teo, Z., Sng, M. K., Zhu, P. & Tan, N. S. Emerging roles of angiopoietin-like 4 in human cancer. Mol. Cancer Res.: MCR 10, 677–688 (2012).
pubmed: 22661548 doi: 10.1158/1541-7786.MCR-11-0519
Dennis, M. K. et al. In vivo effects of a GPR30 antagonist. Nat. Chem. Biol. 5, 421–427 (2009).
pubmed: 19430488 pmcid: 2864230 doi: 10.1038/nchembio.168
Pan, D. Hippo signaling in organ size control. Genes Dev. 21, 886–897 (2007).
pubmed: 17437995 doi: 10.1101/gad.1536007
Meinhardt, G. et al. Pivotal role of the transcriptional co-activator YAP in trophoblast stemness of the developing human placenta. Proc. Natl Acad. Sci. USA 117, 13562–13570 (2020).
pubmed: 32482863 pmcid: 7306800 doi: 10.1073/pnas.2002630117
Piccolo, S., Dupont, S. & Cordenonsi, M. The biology of YAP/TAZ: hippo signaling and beyond. Physiological Rev. 94, 1287–1312 (2014).
doi: 10.1152/physrev.00005.2014
Liu-Chittenden, Y. et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 26, 1300–1305 (2012).
pubmed: 22677547 pmcid: 3387657 doi: 10.1101/gad.192856.112
Ge, H. et al. Oligomerization and regulated proteolytic processing of angiopoietin-like protein 4. J. Biol. Chem. 279, 2038–2045 (2004).
pubmed: 14570927 doi: 10.1074/jbc.M307583200
Yin, W. et al. Genetic variation in ANGPTL4 provides insights into protein processing and function. J. Biol. Chem. 284, 13213–13222 (2009).
pubmed: 19270337 pmcid: 2676053 doi: 10.1074/jbc.M900553200
O’Brien, T. E., Ray, J. G. & Chan, W. S. Maternal body mass index and the risk of preeclampsia: a systematic overview. Epidemiology 14, 368–374 (2003).
pubmed: 12859040 doi: 10.1097/01.EDE.0000059921.71494.D1
Mandard, S. et al. The direct peroxisome proliferator-activated receptor target fasting-induced adipose factor (FIAF/PGAR/ANGPTL4) is present in blood plasma as a truncated protein that is increased by fenofibrate treatment. J. Biol. Chem. 279, 34411–34420 (2004).
pubmed: 15190076 doi: 10.1074/jbc.M403058200
Ma, S., Meng, Z., Chen, R. & Guan, K. L. The hippo pathway: biology and pathophysiology. Annu. Rev. Biochem. 88, 577–604 (2019).
pubmed: 30566373 doi: 10.1146/annurev-biochem-013118-111829
Yang, W. H. et al. A TAZ-ANGPTL4-NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancer. Mol. cancer Res.: MCR 18, 79–90 (2020).
pubmed: 31641008 doi: 10.1158/1541-7786.MCR-19-0691
Meng, Z. et al. MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat. Commun. 6, 8357 (2015).
pubmed: 26437443 doi: 10.1038/ncomms9357
Zhou, X. et al. Estrogen regulates Hippo signaling via GPER in breast cancer. J. Clin. Investig. 125, 2123–2135 (2015).
pubmed: 25893606 pmcid: 4463207 doi: 10.1172/JCI79573
Zheng, Y. et al. Identification of Happyhour/MAP4K as alternative hpo/mst-like kinases in the Hippo kinase cascade. Dev. Cell 34, 642–655 (2015).
pubmed: 26364751 pmcid: 4589524 doi: 10.1016/j.devcel.2015.08.014
Cheng, J. C. et al. S1P stimulates proliferation by upregulating CTGF expression through S1PR2-mediated YAP activation. Mol. cancer Res.: MCR 16, 1543–1555 (2018).
pubmed: 29903770 doi: 10.1158/1541-7786.MCR-17-0681
Zhao, B., Li, L., Tumaneng, K., Wang, C. Y. & Guan, K. L. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 24, 72–85 (2010).
pubmed: 20048001 pmcid: 2802193 doi: 10.1101/gad.1843810
Sun, M. et al. YAP is decreased in preeclampsia and regulates invasion and apoptosis of HTR-8/SVneo. Reprod. Sci. 25, 1382–1393 (2018).
pubmed: 29303055 doi: 10.1177/1933719117746784
Liu, R., Wei, C., Ma, Q. & Wang, W. Hippo-YAP1 signaling pathway and severe preeclampsia (sPE) in the Chinese population. Pregnancy Hypertension 19, 1–10 (2020).
pubmed: 31841877 doi: 10.1016/j.preghy.2019.11.002
Liu, L. et al. ANGPTL4 mediates the protective role of PPARgamma activators in the pathogenesis of preeclampsia. Cell Death Dis. 8, e3054 (2017).
pubmed: 28933788 pmcid: 5636970 doi: 10.1038/cddis.2017.419
Sodhi, A. et al. Angiopoietin-like 4 binds neuropilins and cooperates with VEGF to induce diabetic macular edema. J. Clin. Investig. 129, 4593–4608 (2019).
pubmed: 31545295 pmcid: 6819094 doi: 10.1172/JCI120879
Yang, X., Chen, D., He, B. & Cheng, W. NRP1 and MMP9 are dual targets of RNA-binding protein QKI5 to alter VEGF-R/ NRP1 signalling in trophoblasts in preeclampsia. J. Cell. Mol. Med. 25, 5655–5670 (2021).
pubmed: 33942999 pmcid: 8184681 doi: 10.1111/jcmm.16580
Xu, X., Yang, X. Y., He, B. W., Yang, W. J. & Cheng, W. W. Placental NRP1 and VEGF expression in pre-eclamptic women and in a homocysteine-treated mouse model of pre-eclampsia. Eur. J. Obstet., Gynecol. Reprod. Biol. 196, 69–75 (2016).
doi: 10.1016/j.ejogrb.2015.11.017
Huang, X. et al. Identification of placental nutrient transporters associated with intrauterine growth restriction and pre-eclampsia. BMC Genomics 19, 173 (2018).
pubmed: 29499643 pmcid: 5833046 doi: 10.1186/s12864-018-4518-z
Spradley, F. T. Metabolic abnormalities and obesity’s impact on the risk for developing preeclampsia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312, R5–R12 (2017).
pubmed: 27903516 doi: 10.1152/ajpregu.00440.2016
Dijk, W. & Kersten, S. Regulation of lipid metabolism by angiopoietin-like proteins. Curr. Opin. Lipidol. 27, 249–256 (2016).
pubmed: 27023631 doi: 10.1097/MOL.0000000000000290
Alvino, G. et al. Maternal and fetal fatty acid profile in normal and intrauterine growth restriction pregnancies with and without preeclampsia. Pediatr. Res. 64, 615–620 (2008).
pubmed: 19034199 doi: 10.1203/PDR.0b013e31818702a2
Barrett, H. L. et al. Placental lipase expression in pregnancies complicated by preeclampsia: a case-control study. Reprod. Biol. Endocrinol.: RBE 13, 100 (2015).
doi: 10.1186/s12958-015-0098-9
Vivacqua, A. et al. G protein-coupled receptor 30 expression is up-regulated by EGF and TGF alpha in estrogen receptor alpha-positive cancer cells. Mol. Endocrinol. 23, 1815–1826 (2009).
pubmed: 19749156 pmcid: 5419158 doi: 10.1210/me.2009-0120
Albanito, L. et al. Epidermal growth factor induces G protein-coupled receptor 30 expression in estrogen receptor-negative breast cancer cells. Endocrinology 149, 3799–3808 (2008).
pubmed: 18467441 pmcid: 2488235 doi: 10.1210/en.2008-0117
Yu, Y. et al. Amphiregulin promotes trophoblast invasion and increases MMP9/TIMP1 ratio through ERK1/2 and Akt signal pathways. Life Sci. 236, 116899 (2019).
pubmed: 31614145 doi: 10.1016/j.lfs.2019.116899
Malik, A., Pal, R. & Gupta, S. K. EGF-mediated reduced miR-92a-1-5p controls HTR-8/SVneo cell invasion through activation of MAPK8 and FAS which in turn increase MMP-2/-9 expression. Sci. Rep. 10, 12274 (2020).
pubmed: 32703964 pmcid: 7378053 doi: 10.1038/s41598-020-68966-4
Armant, D. R. et al. Reduced expression of the epidermal growth factor signaling system in preeclampsia. Placenta 36, 270–278 (2015).
pubmed: 25589361 doi: 10.1016/j.placenta.2014.12.006
Weissenborn, C. et al. GPER promoter methylation controls GPER expression in breast cancer patients. Cancer Investig. 35, 100–107 (2017).
doi: 10.1080/07357907.2016.1271886
Graham, C. H. et al. Establishment and characterization of first trimester human trophoblast cells with extended lifespan. Exp. Cell Res. 206, 204–211 (1993).
pubmed: 7684692 doi: 10.1006/excr.1993.1139
Wang, L., Feng, Z., Wang, X., Wang, X. & Zhang, X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26, 136–138 (2010).
doi: 10.1093/bioinformatics/btp612
Cheng, J. C., Chang, H. M. & Leung, P. C. K. TGF-beta1 inhibits human trophoblast cell invasion by upregulating connective tissue growth factor expression. Endocrinology 158, 3620–3628 (2017).
pubmed: 28977597 doi: 10.1210/en.2017-00536
Cheng, J. C., Chang, H. M. & Leung, P. C. Transforming growth factor-beta1 inhibits trophoblast cell invasion by inducing Snail-mediated down-regulation of vascular endothelial-cadherin protein. J. Biol. Chem. 288, 33181–33192 (2013).
pubmed: 24106276 pmcid: 3829165 doi: 10.1074/jbc.M113.488866

Auteurs

Jung-Chien Cheng (JC)

Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China. jungchien.cheng@gmail.com.

Lanlan Fang (L)

Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.

Yuxi Li (Y)

Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.

Avinash Thakur (A)

Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada, V5Z 1L3.
Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4.

Pamela A Hoodless (PA)

Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada, V5Z 1L3.
Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4.
School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4.

Yanjie Guo (Y)

Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.

Zhen Wang (Z)

Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.

Ze Wu (Z)

Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.

Yang Yan (Y)

Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.

Qiongqiong Jia (Q)

Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.

Yibo Gao (Y)

Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.

Xiaoyu Han (X)

Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.

Yiping Yu (Y)

Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.

Ying-Pu Sun (YP)

Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China. syp2008@vip.sina.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH