Higher testosterone is associated with increased inflammatory markers in women with SARS-CoV-2 pneumonia: preliminary results from an observational study.
COVID-19
Gender difference
Inflammatory markers
Prognosis
Sex hormones
Journal
Journal of endocrinological investigation
ISSN: 1720-8386
Titre abrégé: J Endocrinol Invest
Pays: Italy
ID NLM: 7806594
Informations de publication
Date de publication:
Mar 2022
Mar 2022
Historique:
received:
08
05
2021
accepted:
21
09
2021
pubmed:
4
11
2021
medline:
24
2
2022
entrez:
3
11
2021
Statut:
ppublish
Résumé
Objective of this study was to assess the association between testosterone (T) levels and biochemical markers in a cohort of female patients admitted for SARS-CoV-2 infection in a respiratory intensive care unit (RICU). A consecutive series of 17 women affected by SARSCoV-2 pneumonia and recovered in the RICU of the Hospital of Mantua were analyzed. Biochemical inflammatory markers as well as total testosterone (TT), calculated free T (cFT), sex hormone-binding globulin (SHBG), and luteinizing hormone (LH) were determined. TT and cFT were significantly and positively associated with PCT, CRP, and fibrinogen as well as with a worse hospital course. We did not observe any significant association between TT and cFT with LH; conversely, both TT and cFT showed a positive correlation with cortisol. By LOWESS analysis, a linear relationship could be assumed for CRP and fibrinogen, while a threshold effect was apparent in the relationship between TT and procalcitonin, LDH and ferritin. When the TT threshold value of 1 nmol/L was used, significant associations between TT and PCT, LDH or ferritin were observed for values above this value. For LDH and ferritin, this was confirmed also in an age-adjusted model. Similar results were found for the association of cFT with the inflammatory markers with a threshold effect towards LDH and ferritin with increased LDH and ferritin levels for values above cFT 5 pmol/L. Cortisol is associated with serum inflammatory markers with similar trends observed for TT; conversely, the relationship between LH and inflammatory markers had different trends. Opposite to men, in women with SARS-CoV-2 pneumonia, higher TT and cFT are associated with a stronger inflammatory status, probably related to adrenal cortex hyperactivity.
Identifiants
pubmed: 34731444
doi: 10.1007/s40618-021-01682-6
pii: 10.1007/s40618-021-01682-6
pmc: PMC8564592
doi:
Substances chimiques
Biomarkers
0
SHBG protein, human
0
Sex Hormone-Binding Globulin
0
Testosterone
3XMK78S47O
Luteinizing Hormone
9002-67-9
Types de publication
Journal Article
Observational Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
639-648Informations de copyright
© 2021. The Author(s).
Références
D’Arena G, Penna A, Crocamo A et al (2020) Heterogeneity of clinical and radiological findings of COVID-19. Postgrad Med J. https://doi.org/10.1136/postgradmedj-2020-137901
doi: 10.1136/postgradmedj-2020-137901
pubmed: 32727887
Rivieccio BA, Luconi E, Boracchi P et al (2020) Heterogeneity of COVID-19 outbreak in Italy. Acta Biomed 91(2):31–34. https://doi.org/10.23750/abm.v91i2.9579 (Published 2020 Apr 20)
doi: 10.23750/abm.v91i2.9579
pubmed: 32420921
pmcid: 7569642
Struyf T, Deeks JJ, Dinnes J et al (2020) Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19 disease. Cochrane Database Syst Rev 7:CD013665. https://doi.org/10.1002/14651858.CD013665 (Published 2020 Jul 7)
doi: 10.1002/14651858.CD013665
pubmed: 32633856
Galbadage T, Peterson BM, Wang JS et al (2020) Molecular Mechanisms Lead to Sex-Specific COVID-19 Prognosis and Targeted Therapies. Front Med (Lausanne) 7:589060. https://doi.org/10.3389/fmed.2020.589060
doi: 10.3389/fmed.2020.589060
Li J, Huang DQ, Zou B, Yang H et al (2020) Epidemiology of COVID-19: A systematic review and meta-analysis of clinical characteristics, risk factors, and outcomes. J Med Virol. https://doi.org/10.1002/jmv.26424 (Epub ahead of print)
doi: 10.1002/jmv.26424
pubmed: 33289151
pmcid: 8357536
Zheng Z, Peng F, Xu B et al (2020) Risk factors of critical & mortal COVID-19 cases: a systematic literature review and meta-analysis. J Infect 81(2):e16–e25. https://doi.org/10.1016/j.jinf.2020.04.021 (Epub 2020 Apr 23)
doi: 10.1016/j.jinf.2020.04.021
pubmed: 32335169
pmcid: 32335169
https://globalhealth5050.org/the-sex-gender-and-covid-19-project/the-data-tracker/ . Accessed 9 Feb 2021
Giagulli VA, Guastamacchia E, Magrone T et al (2021) Worse progression of COVID-19 in men: Is testosterone a key factor? Andrology 9(1):53–64. https://doi.org/10.1111/andr.12836 (Epub 2020 Jun 28)
doi: 10.1111/andr.12836
pubmed: 32524732
Papadopoulos V, Li L, Samplaski M (2020) Why does COVID-19 kill more elderly men than women? Is there a role for testosterone? [published online ahead of print, 2020 Jul 18]. Andrology. https://doi.org/10.1111/andr.12868
doi: 10.1111/andr.12868
pubmed: 32681716
pmcid: 7404939
Rastrelli G, Di Stasi V, Inglese F et al (2020) Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia patients [published online ahead of print, 2020 May 20]. Andrology. https://doi.org/10.1111/andr.12821
doi: 10.1111/andr.12821
pubmed: 32436355
pmcid: 7280645
Bove R (2013) Autoimmune diseases and reproductive aging. Clin Immunol 149(2):251–264. https://doi.org/10.1016/j.clim.2013.02.010
doi: 10.1016/j.clim.2013.02.010
pubmed: 23522436
pmcid: 3805815
Kuhnle U, Lindl U, Keller U et al (1994) Androgen binding sites in peripheral human mononuclear leukocytes of healthy males and females. J Steroid Biochem Mol Biol 48(4):403–408. https://doi.org/10.1016/0960-0760(94)90081-7
doi: 10.1016/0960-0760(94)90081-7
pubmed: 8142318
Lorenz TK, Heiman JR, Demas GE (2017) Testosterone and immune-reproductive tradeoffs in healthy women. Horm Behav 88:122–130. https://doi.org/10.1016/j.yhbeh.2016.11.009 (Epub 2016 Nov 17)
doi: 10.1016/j.yhbeh.2016.11.009
pubmed: 27865788
Vermeulen A, Verdonck L, Kaufman JM (1999) A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab 84:3666–3672
doi: 10.1210/jcem.84.10.6079
Çayan S, Uğuz M, Saylam B, Akbay E (2020) Effect of serum total testosterone and its relationship with other laboratory parameters on the prognosis of coronavirus disease 2019 (COVID-19) in SARS-CoV-2 infected male patients: a cohort study. Aging Male 3:1–11. https://doi.org/10.1080/13685538.2020.1807930
doi: 10.1080/13685538.2020.1807930
Ma L, Xie W, Li D et al (2020) Evaluation of sex-related hormones and semen characteristics in reproductive-aged male COVID-19 patients. J Med Virol. https://doi.org/10.1002/jmv.26259 (Epub ahead of print)
doi: 10.1002/jmv.26259
pubmed: 32926424
pmcid: 7436402
Salciccia S, Del Giudice F, Gentile V et al (2020) Interplay between male testosterone levels and the risk for subsequent invasive respiratory assistance among COVID-19 patients at hospital admission. Endocrine 70(2):206–210. https://doi.org/10.1007/s12020-020-02515-x (Epub 2020 Oct 8)
doi: 10.1007/s12020-020-02515-x
pubmed: 33030665
pmcid: 7543668
Fijak M, Schneider E, Klug J et al (2011) Testosterone replacement effectively inhibits the development of experimental autoimmune orchitis in rats: evidence for a direct role of testosterone on regulatory T cell expansion. J Immunol 186(9):5162–5172. https://doi.org/10.4049/jimmunol.1001958
doi: 10.4049/jimmunol.1001958
pubmed: 21441459
Bobjer J, Katrinaki M, Tsatsanis C et al (2013) Negative association between testosterone concentration and inflammatory markers in young men: a nested cross-sectional study. PLoS ONE 8(4):e61466. https://doi.org/10.1371/journal.pone.0061466
doi: 10.1371/journal.pone.0061466
pubmed: 23637840
pmcid: 3630214
Vignozzi L, Filippi S, Comeglio P et al (2014) Nonalcoholic steatohepatitis as a novel player in metabolic syndrome-induced erectile dysfunction: an experimental study in the rabbit. Mol Cell Endocrinol 384(1–2):143–154. https://doi.org/10.1016/j.mce.2014.01.014
doi: 10.1016/j.mce.2014.01.014
pubmed: 24486698
Mohamad NV, Wong SK, Wan Hasan WN et al (2019) The relationship between circulating testosterone and inflammatory cytokines in men. Aging Male 22(2):129–140. https://doi.org/10.1080/13685538.2018.1482487
doi: 10.1080/13685538.2018.1482487
pubmed: 29925283
Kalinchenko SY, Tishova YA, Mskhalaya GJ et al (2010) Effects of testosterone supplementation on markers of the metabolic syndrome and inflammation in hypogonadal men with the metabolic syndrome: the double-blinded placebo-controlled Moscow study. Clin Endocrinol (Oxf) 73(5):602–612. https://doi.org/10.1111/j.1365-2265.2010.03845.x (Erratum.In:ClinEndocrinol(Oxf).2011Aug;75(2):275 PMID: 20718771)
doi: 10.1111/j.1365-2265.2010.03845.x
González F (2012) Inflammation in polycystic ovary syndrome: underpinning of insulin resistance and ovarian dysfunction. Steroids 77(4):300–305. https://doi.org/10.1016/j.steroids.2011.12.003
doi: 10.1016/j.steroids.2011.12.003
pubmed: 22178787
Hatziagelaki E, Pergialiotis V, Kannenberg JM et al (2019) Association between biomarkers of low-grade inflammation and sex hormones in women with polycystic ovary syndrome [published online ahead of print, 2019 Aug 28]. Exp Clin Endocrinol Diabetes. https://doi.org/10.1055/a-0992-9114
doi: 10.1055/a-0992-9114
pubmed: 31461765
Dziedziejko V, Kurzawski M, Safranow K et al (2012) CAG repeat polymorphism in the androgen receptor gene in women with rheumatoid arthritis. J Rheumatol 39(1):10–17. https://doi.org/10.3899/jrheum.110894
doi: 10.3899/jrheum.110894
pubmed: 22089459
Yu SF, Cheng TT, Hsu YH et al (2007) Association of tri-nucleotide (CAG and GGC) repeat polymorphism of androgen receptor gene in Taiwanese women with refractory or remission rheumatoid arthritis. Clin Rheumatol 26(12):2051. https://doi.org/10.1007/s10067-007-0616-z (Epub 2007 Apr 13)
doi: 10.1007/s10067-007-0616-z
pubmed: 17431729
Petri MA, Mease PJ, Merrill JT et al (2004) Effects of prasterone on disease activity and symptoms in women with active systemic lupus erythematosus. Arthritis Rheum 50(9):2858–2868. https://doi.org/10.1002/art.20427
doi: 10.1002/art.20427
pubmed: 15452837
Maseroli E, Cellai I, Filippi S et al (2020) Anti-inflammatory effects of androgens in the human vagina. J Mol Endocrinol 65(3):109–124. https://doi.org/10.1530/JME-20-0147
doi: 10.1530/JME-20-0147
pubmed: 32755990
Davison SL, Bell R, Donath S et al (2005) Androgen levels in adult females: changes with age, menopause, and oophorectomy. J Clin Endocrinol Metab 90(7):3847–3853. https://doi.org/10.1210/jc.2005-0212
doi: 10.1210/jc.2005-0212
pubmed: 15827095
Tan T, Khoo B, Mills EG et al (2020) Association between high serum total cortisol concentrations and mortality from COVID-19. Lancet Diabetes Endocrinol 8(8):659–660. https://doi.org/10.1016/S2213-8587(20)30216-3 (Epub 2020 Jun 18)
doi: 10.1016/S2213-8587(20)30216-3
pubmed: 32563278
pmcid: 7302794
Mollica V, Rizzo A, Massari F (2020) The pivotal role of TMPRSS2 in coronavirus disease 2019 and prostate cancer. Future Oncol 16(27):2029–2033. https://doi.org/10.2217/fon-2020-0571 (Epub 2020 Jul 13. PMID: 32658591; PMCID: PMC7359420)
doi: 10.2217/fon-2020-0571
pubmed: 32658591
Mohamed MS, Moulin TC, Schiöth HB (2021) Sex differences in COVID-19: the role of androgens in disease severity and progression. Endocrine 71(1):3–8. https://doi.org/10.1007/s12020-020-02536-6 (Epub 2020 Nov 11. PMID: 33179220; PMCID: PMC7657570)
doi: 10.1007/s12020-020-02536-6
pubmed: 33179220
https://doi.org/10.1101/2020.05.07.20073817v2