Endobronchial valve positioning for alveolar-pleural fistula following ICU management complicating COVID-19 pneumonia.
Alveolar-pleural fistula
COVID-19
Endobronchial valve
Klebsiella pneumoniae
Pneumothorax
Journal
BMC pulmonary medicine
ISSN: 1471-2466
Titre abrégé: BMC Pulm Med
Pays: England
ID NLM: 100968563
Informations de publication
Date de publication:
27 Sep 2021
27 Sep 2021
Historique:
received:
24
11
2020
accepted:
01
09
2021
entrez:
28
9
2021
pubmed:
29
9
2021
medline:
12
10
2021
Statut:
epublish
Résumé
The main clinical consequences of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection are pneumonia and respiratory failure even requiring mechanical ventilation. In this context, the lung parenchyma is highly prone to ventilator-related injury, with pneumothorax and persistent air leak as the most serious adverse events. So far, endobronchial valve (EBV) positioning has proved efficacious in treating air leaks with a high success rate. We report, for the first time, two cases of patients affected by SARS-CoV-2-related pneumonia complicated with bacterial super-infection, experiencing pneumothorax and persistent air leaks after invasive mechanical ventilation. Despite the severity of respiratory failure both patients underwent rigid interventional bronchoscopy and were successfully treated through EBV positioning. Persistent air leaks may result from lung tissue damage due to a complex interaction between inflammation and ventilator-related injury (VILI), especially in the advanced stages of ARDS. EBV positioning seems to be a feasible and effective minimally invasive therapeutic option for treating this subset of patients.
Sections du résumé
BACKGROUND
BACKGROUND
The main clinical consequences of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection are pneumonia and respiratory failure even requiring mechanical ventilation. In this context, the lung parenchyma is highly prone to ventilator-related injury, with pneumothorax and persistent air leak as the most serious adverse events. So far, endobronchial valve (EBV) positioning has proved efficacious in treating air leaks with a high success rate.
CASE PRESENTATION
METHODS
We report, for the first time, two cases of patients affected by SARS-CoV-2-related pneumonia complicated with bacterial super-infection, experiencing pneumothorax and persistent air leaks after invasive mechanical ventilation. Despite the severity of respiratory failure both patients underwent rigid interventional bronchoscopy and were successfully treated through EBV positioning.
CONCLUSIONS
CONCLUSIONS
Persistent air leaks may result from lung tissue damage due to a complex interaction between inflammation and ventilator-related injury (VILI), especially in the advanced stages of ARDS. EBV positioning seems to be a feasible and effective minimally invasive therapeutic option for treating this subset of patients.
Identifiants
pubmed: 34579700
doi: 10.1186/s12890-021-01653-w
pii: 10.1186/s12890-021-01653-w
pmc: PMC8475464
doi:
Types de publication
Case Reports
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
307Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2021. The Author(s).
Références
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. https://doi.org/10.1016/S0140-6736(20)30183-5 .
doi: 10.1016/S0140-6736(20)30183-5
pubmed: 31986264
pmcid: 31986264
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62. https://doi.org/10.1016/S0140-6736(20)30566-3 .
doi: 10.1016/S0140-6736(20)30566-3
pubmed: 7270627
pmcid: 7270627
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect. 2020;80(6):607–13. https://doi.org/10.1016/j.jinf.2020.03.037 .
doi: 10.1016/j.jinf.2020.03.037
pubmed: 7194613
pmcid: 7194613
Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virol Sin. 2020;35(3):266–71. https://doi.org/10.1007/s12250-020-00207-4 .
doi: 10.1007/s12250-020-00207-4
pubmed: 7090474
pmcid: 7090474
Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46:1099–102. https://doi.org/10.1007/s00134-020-06033-2 .
doi: 10.1007/s00134-020-06033-2
pubmed: 7154064
pmcid: 7154064
Gattinoni L, Tonetti T, Quintel M. Regional physiology of ARDS. Crit Care. 2017;21(Suppl 3):312.
doi: 10.1186/s13054-017-1905-9
Cressoni M, Chiurazzi C, Gotti M, Amini M, Brioni M, Algieri I, et al. Lung inhomogeneities and time course of ventilator-induced mechanical injuries. Anesthesiology. 2015;123:618–27.
doi: 10.1097/ALN.0000000000000727
Gammon RB, Shin MS, Groves RH Jr, Hardin JM, Hsu C, Buchalter SE. Clinical risk factors for pulmonary barotraumas: a multivariate analysis. Am J Respir Crit Care Med. 1995;152:1235–40.
doi: 10.1164/ajrccm.152.4.7551376
Karnik AA, Karnik AM. Pneumothorax and Barotrauma. Crit Care Med. 2008. https://doi.org/10.1016/B978-032304841-5.50050-9 .
doi: 10.1016/B978-032304841-5.50050-9
Boussarsar M, Thierry G, Jaber S, Roudot-Thoraval F, Lemaire F, Brochard L. Relationship between ventilatory settings and barotraumas in the acute respiratory distress syndrome. Intensive Care Med. 2002;28:406–13.
doi: 10.1007/s00134-001-1178-1
Yao W, Wang T, Jiang B, Gao F, Wang L, Zheng H, et al. Emergency tracheal intubation in 202 patients with COVID-19 in Wuhan, China: lessons learnt and international expert recommendations. Br J Anaesth. 2020;125(1):e28–37. https://doi.org/10.1016/j.bja.2020.03.026 .
doi: 10.1016/j.bja.2020.03.026
Sakata KK, Reisenauer JS, Kern RM, Mullon JJ. Persistent air leak – review. Respir Med. 2018;137:213–8. https://doi.org/10.1016/j.rmed.2018.03.017 .
doi: 10.1016/j.rmed.2018.03.017
Dugan KC, Laxmanan B, Murgu S, Hogarth DK. Management of persistent air leaks. Chest. 2017;152(2):417–23. https://doi.org/10.1016/j.chest.2017.02.020 (Epub 2017 Mar 4).
doi: 10.1016/j.chest.2017.02.020
pubmed: 6026238
pmcid: 6026238
Zhao K, Mei J, Xia C, et al. Prolonged air leak after video-assisted thoracic surgery lung cancer resection: risk factors and its effect on postoperative clinical recovery. J Thorac Dis. 2017;9(5):1219–25. https://doi.org/10.21037/jtd.2017.04.31 .
doi: 10.21037/jtd.2017.04.31
pubmed: 5465145
pmcid: 5465145
Bertolaccini L, Bonfanti B, Kawamukai K, Parri SNF, Lacava N, Solli P. Bronchoscopic management of prolonged air leak. J Thorac Dis. 2018;10(Suppl 27):S3352–5. https://doi.org/10.21037/jtd.2018.04.167 .
doi: 10.21037/jtd.2018.04.167
pubmed: 6204343
pmcid: 6204343
Gattinoni L, Chiumello D, Rossi S. COVID-19 pneumonia: ARDS or not? Crit Care. 2020;24:154. https://doi.org/10.1186/s13054-020-02880-z .
doi: 10.1186/s13054-020-02880-z
pubmed: 7160817
pmcid: 7160817
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–4. https://doi.org/10.1016/S0140-6736(20)30628-0 .
doi: 10.1016/S0140-6736(20)30628-0
pubmed: 7270045
pmcid: 7270045
Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369:2126–36. https://doi.org/10.1056/NEJMra1208707 .
doi: 10.1056/NEJMra1208707
pubmed: 24283226
pmcid: 24283226
Ruggeri P, Girbino G. Fatal pneumomediastinum associated with use of noninvasive mechanical ventilation. Respirol Case Rep. 2014;2(4):126–8. https://doi.org/10.1002/rcr2.73 .
doi: 10.1002/rcr2.73
pubmed: 4263491
pmcid: 4263491
Lew TWK, Kwek TK, Tai D, Earnest A, Loo S, Singh S, et al. Acute respiratory distress syndrome in critically ill patients with severe acute respiratory syndrome. JAMA. 2003;290:374.
doi: 10.1001/jama.290.3.374
Fowler RA, Lapinsky SE, Hallett D, Detsky AS, Sibbald WJ, Slutsky AS, et al. Critically ill patients with severe acute respiratory syndrome. JAMA. 2003;290:373.
Peiris JSM, Chu CM, Cheng VCC, Chan KS, Hung IFN, Poon LLM, et al. Clinical progression and viral load in a community outbreak of coronavirus associated SARS pneumonia: a prospective study. Lancet. 2003;361:1767.
doi: 10.1016/S0140-6736(03)13412-5
Kao HK, Wang JH, Sung CS, Huang YC, Lien TC. Pneumothorax and mortality in the mechanically ventilated SARS patients: a prospective clinical study. Crit Care. 2005;9:R440–5.
doi: 10.1186/cc3736
Quincho-Lopez A, Quincho-Lopez DL, Hurtado-Medina FD. Case report: pneumothorax and pneumomediastinum as uncommon complications of COVID-19 pneumonia—Literature review. Am J Trop Med Hyg. 2020;103(3):1170–6.
doi: 10.4269/ajtmh.20-0815
Rouby JJ, Lherm T, Martin de Lassale E, Poète P, Bodin L, Finet JF, et al. Histologic aspect of pulmonary barotrauma in critically ill patients with acute respiratory failure. Intensive Care Med. 1993;19:383.
doi: 10.1007/BF01724877
Treggiari MM, Romand JA, Martin JB, Suter PM. Air cysts and bronchiectasis prevail in nondependent areas in severe acute respiratory distress syndrome: a computed tomographic study of ventilator-associated changes. Crit Care Med. 2020;30:1747–52.
doi: 10.1097/00003246-200208000-00012
Goldstein I, Bughalo MT, Marquette CH, Lenaour G, Lu Q, Rouby JJ. Experimental ICU Study Group. Mechanical ventilation-induced air-space enlargement during experimental pneumonia in piglets. Am J Respir Crit Care Med. 2001;163:958–64.
doi: 10.1164/ajrccm.163.4.2006072
Lim CM, Lee SS, Lee JS, Koh Y, Shim TS, Lee SD, et al. Morphometric effects of the recruitment maneuver on saline-lavaged canine lungs: a computed tomographic analysis. Anesthesiology. 2003;99:71–80.
doi: 10.1097/00000542-200307000-00015
Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China. A descriptive study. Lancet Infect Dis. 2020;20:425.
doi: 10.1016/S1473-3099(20)30086-4
Marchioni A, Tonelli R, Rossi G, Spagnolo P, Luppi F, Cerri S, et al. Ventilatory support and mechanical properties of the fibrotic lung acting as a “squishy ball.” Ann Intensive Care. 2020;10:13.
doi: 10.1186/s13613-020-0632-6
Gadkowski LB, Stout JE. Cavitary pulmonary disease. Clin Microbiol Rev. 2008;21(2):305–33, table of contents. https://doi.org/10.1128/CMR.00060-07 . PMID: 18400799; PMCID: PMC2292573.
Aiolfi A, Biraghi T, Montisci A, Bonitta G, Micheletto G, Donatelli F, et al. Management of persistent pneumothorax with thoracoscopy and bleb resection in COVID-19 patients. Ann Thorac Surg. 2020;110:e413–5.
doi: 10.1016/j.athoracsur.2020.04.011
Talon A, Arif MZ, Mohamed H, Khokar A, Saeed AI. Bronchopleural fistula as a complication in a COVID-19 patient managed with endobronchial valves. J Investig Med High Impact Case Rep. 2021;9:23247096211013216.
pubmed: 8114316
pmcid: 8114316
Klooster K, ten Hacken NH, Hartman JE, Kerstjens HA, van Rikxoort EM, Slebos DJ. Endobronchial valves for emphysema without interlobar collateral ventilation. N Engl J Med. 2015;373:2325–35. https://doi.org/10.1056/NEJMoa1507807 .
doi: 10.1056/NEJMoa1507807
Kovitz KL, French KD. Endobronchial valve placement and balloon occlusion for persistent air leak: procedure overview and new current procedural terminology codes for 2013. Chest. 2013;144(2):661–5. https://doi.org/10.1378/chest.12-2746 .
doi: 10.1378/chest.12-2746
Travaline JM, McKenna RJ Jr, De Giacomo T, Venuta F, Hazelrigg SR, Boomer M, et al. Treatment of persistent pulmonary air leaks using endobronchial valves. Chest. 2009;136(2):355–60. https://doi.org/10.1378/chest.08-2389 .
doi: 10.1378/chest.08-2389