Auxiliary interfaces support the evolution of specific toxin-antitoxin pairing.


Journal

Nature chemical biology
ISSN: 1552-4469
Titre abrégé: Nat Chem Biol
Pays: United States
ID NLM: 101231976

Informations de publication

Date de publication:
12 2021
Historique:
received: 22 03 2021
accepted: 20 07 2021
pubmed: 25 9 2021
medline: 29 12 2021
entrez: 24 9 2021
Statut: ppublish

Résumé

Toxin-antitoxin (TA) systems are a large family of genes implicated in the regulation of bacterial growth and its arrest in response to attacks. These systems encode nonsecreted toxins and antitoxins that specifically pair, even when present in several paralogous copies per genome. Salmonella enterica serovar Typhimurium contains three paralogous TacAT systems that block bacterial translation. We determined the crystal structures of the three TacAT complexes to understand the structural basis of specific TA neutralization and the evolution of such specific pairing. In the present study, we show that alteration of a discrete structural add-on element on the toxin drives specific recognition by their cognate antitoxin underpinning insulation of the three pairs. Similar to other TA families, the region supporting TA-specific pairing is key to neutralization. Our work reveals that additional TA interfaces beside the main neutralization interface increase the safe space for evolution of pairing specificity.

Identifiants

pubmed: 34556858
doi: 10.1038/s41589-021-00862-y
pii: 10.1038/s41589-021-00862-y
doi:

Substances chimiques

Antitoxins 0
Bacterial Toxins 0
Recombinant Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1296-1304

Subventions

Organisme : Medical Research Council
ID : MR/M009629/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/D524840/1
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 202926/Z/16/Z
Pays : United Kingdom

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Jaffe, A., Ogura, T. & Hiraga, S. Effects of the CCD function of the F plasmid on bacterial growth. J. Bacteriol. 163, 841–849 (1985).
pubmed: 3897195 pmcid: 219208 doi: 10.1128/jb.163.3.841-849.1985
Fineran, P. C. et al. The phage abortive infection system, ToxIN, functions as a protein–RNA toxin–antitoxin pair. Proc. Natl Acad. Sci. USA 106, 894–899 (2009).
pubmed: 19124776 pmcid: 2630095 doi: 10.1073/pnas.0808832106
Helaine, S. et al. Internalization of salmonella by macrophages induces formation of nonreplicating persisters. Science 343, 204–208 (2014).
pubmed: 24408438 pmcid: 6485627 doi: 10.1126/science.1244705
Ross, B. N., Micheva-Viteva, S., Hong-Geller, E. & Torres, A. G. Evaluating the role of Burkholderia pseudomallei K96243 toxins BPSS0390, BPSS0395, and BPSS1584 in persistent infection. Cell. Microbiol. 21, e13096 (2019).
Yamaguchi, Y., Park, J. H. & Inouye, M. Toxin–antitoxin systems in bacteria and archaea. Annu. Rev. Genet. 45, 61–79 (2011).
pubmed: 22060041 doi: 10.1146/annurev-genet-110410-132412
Page, R. & Peti, W. Toxin–antitoxin systems in bacterial growth arrest and persistence. Nat. Chem. Biol. 12, 208–214 (2016).
pubmed: 26991085 doi: 10.1038/nchembio.2044
Huang, C. Y., Gonzalez-Lopez, C., Henry, C., Mijakovic, I. & Ryan, K. R. hipBA toxin–antitoxin systems mediate persistence in Caulobacter crescentus. Sci. Rep. 10, 2865 (2020).
Goulard, C., Langrand, S., Carniel, E. & Chauvaux, S. The Yersinia pestis chromosome encodes active addiction toxins. J. Bacteriol. 192, 3669–3677 (2010).
pubmed: 20472800 pmcid: 2897361 doi: 10.1128/JB.00336-10
Wilbaux, M., Mine, N., Guérout, A. M., Mazel, D. & Van Melderen, L. Functional interactions between coexisting toxin-antitoxin systems of the ccd family in Escherichia coli O157:H7. J. Bacteriol. 189, 2712–2719 (2007).
pubmed: 17259320 pmcid: 1855815 doi: 10.1128/JB.01679-06
Aakre, C. D. et al. Evolving new protein–protein interaction specificity through promiscuous intermediates. Cell 163, 594–606 (2015).
pubmed: 26478181 pmcid: 4623991 doi: 10.1016/j.cell.2015.09.055
Fiebig, A., Castro Rojas, C. M., Siegal-Gaskins, D. & Crosson, S. Interaction specificity, toxicity and regulation of a paralogous set of ParE/RelE-family toxin–antitoxin systems. Mol. Microbiol. 77, 236–251 (2010).
pubmed: 20487277 pmcid: 2907451 doi: 10.1111/j.1365-2958.2010.07207.x
Ramage, H. R., Connolly, L. E. & Cox, J. S. Comprehensive functional analysis of Mycobacterium tuberculosis toxin–antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet 5, e1000767 (2009).
pubmed: 20011113 pmcid: 2781298 doi: 10.1371/journal.pgen.1000767
Hallez, R. et al. New toxins homologous to ParE belonging to three-component toxin-antitoxin systems in Escherichia coli O157:H7. Mol. Microbiol. 76, 719–732 (2010).
pubmed: 20345661 doi: 10.1111/j.1365-2958.2010.07129.x
Cheverton, A. M. et al. A salmonella toxin promotes persister formation through acetylation of tRNA. Mol. Cell 63, 86–96 (2016).
pubmed: 27264868 pmcid: 4942678 doi: 10.1016/j.molcel.2016.05.002
Rycroft, J. A. et al. Activity of acetyltransferase toxins involved in Salmonella persister formation during macrophage infection. Nat. Commun. 9, 1993 (2018).
pubmed: 29777131 pmcid: 5959882 doi: 10.1038/s41467-018-04472-6
Jurenas, D. et al. AtaT blocks translation initiation by N-acetylation of the initiator tRNAfMet. Nat. Chem. Biol. 13, 640–646 (2017).
pubmed: 28369041 doi: 10.1038/nchembio.2346
Ovchinnikov, S. V. et al. Mechanism of translation inhibition by type II GNAT toxin AtaT2. Nucleic Acids Res. 48, 8617–8625 (2020).
pubmed: 32597957 pmcid: 7470980 doi: 10.1093/nar/gkaa551
Wilcox, B. et al. Escherichia coli ItaT is a type II toxin that inhibits translation by acetylating isoleucyl-tRNAIle. Nucleic Acids Res. 46, 7873–7885 (2018).
pubmed: 29931259 pmcid: 6125619 doi: 10.1093/nar/gky560
Qian, H. et al. Identification and characterization of acetyltransferase-type toxin–antitoxin locus in Klebsiella pneumoniae. Mol. Microbiol. 108, 336–349 (2018).
pubmed: 29461656 doi: 10.1111/mmi.13934
McVicker, G. & Tang, C. M. Deletion of toxin–antitoxin systems in the evolution of Shigella sonnei as a host-adapted pathogen. Nat. Microbiol. 2, 16204 (2016).
pubmed: 27819667 doi: 10.1038/nmicrobiol.2016.204
Van Acker, H., Sass, A., Dhondt, I., Nelis, H. J. & Coenye, T. Involvement of toxin–antitoxin modules in Burkholderia cenocepacia biofilm persistence. Pathog. Dis. 71, 326–335 (2014).
pubmed: 24719230 doi: 10.1111/2049-632X.12177
Narimisa, N., Sadeghi Kalani, B., Mohammadzadeh, R. & Masjedian Jazi, F. Combination of antibiotics—nisin reduces the formation of persister cell in Listeria monocytogenes. Microb. Drug Resist. 27, 137–144 (2021).
pubmed: 32429732 doi: 10.1089/mdr.2020.0019
Iqbal, N., Guérout, A. M., Krin, E., Le Roux, F. & Mazel, D. Comprehensive functional analysis of the 18 Vibrio cholerae N16961 toxin–antitoxin systems substantiates their role in stabilizing the superintegron. J. Bacteriol. 197, 2150–2159 (2015).
pubmed: 25897030 pmcid: 4455273 doi: 10.1128/JB.00108-15
Zhang, C., Yashiro, Y., Sakaguchi, Y., Suzuki, T. & Tomita, K. Substrate specificities of Escherichia coli ItaT that acetylates aminoacyl-tRNAs. Nucleic Acids Res. 48, 7532–7544 (2020).
pubmed: 32501503 pmcid: 7367177
Burckhardt, R. M. & Escalante-Semerena, J. C. Small-molecule acetylation by GCN5-related N-acetyltransferases in bacteria. Microbiol. Mol. Biol. Rev. 84, e00090-19 (2020).
Jurėnas, D., Garcia-Pino, A. & Van Melderen, L. Novel toxins from type II toxin–antitoxin systems with acetyltransferase activity. Plasmid 93, 30–35 (2017).
pubmed: 28941941 doi: 10.1016/j.plasmid.2017.08.005
Yashiro, Y., Yamashita, S. & Tomita, K. Crystal structure of the enterohemorrhagic Escherichia coli AtaT–AtaR toxin–antitoxin complex. Structure 27, 476–484.e3 (2019).
pubmed: 30612860 doi: 10.1016/j.str.2018.11.005
Jurėnas, D., Van Melderen, L. & Garcia-Pino, A. Mechanism of regulation and neutralization of the AtaR–AtaT toxin–antitoxin system. Nat. Chem. Biol. 15, 285–294 (2019).
pubmed: 30718814 doi: 10.1038/s41589-018-0216-z
Qian, H. et al. Toxin–antitoxin operon kacAT of Klebsiella pneumoniae is regulated by conditional cooperativity via a W-shaped KacA-KacT complex. Nucleic Acids Res. 47, 7690–7702 (2019).
pubmed: 31260525 pmcid: 6698736 doi: 10.1093/nar/gkz563
Walling, L. R. & Butler, J. S. Structural determinants for antitoxin identity and insulation of cross talk between homologous toxin–antitoxin systems. J. Bacteriol. 198, 3287–3295 (2016).
pubmed: 27672196 pmcid: 5116932 doi: 10.1128/JB.00529-16
Plach, M. G. et al. Evolutionary diversification of protein–protein interactions by interface add-ons. Proc. Natl Acad. Sci. USA 114, E8333–E8342 (2017).
pubmed: 28923934 pmcid: 5635890 doi: 10.1073/pnas.1707335114
Lite, T.-L. V. et al. Uncovering the basis of protein-protein interaction specificity with a combinatorially complete library. eLife 9, e60924 (2020).
Balakrishnan, S., Kamisetty, H., Carbonell, J. G., Lee, S. I. & Langmead, C. J. Learning generative models for protein fold families. Proteins Struct. Funct. Bioinform. 79, 1061–1078 (2011).
doi: 10.1002/prot.22934
Schreiter, E. R. & Drennan, C. L. Ribbon–helix–helix transcription factors: variations on a theme. Nat. Rev. Microbiol. 5, 710–720 (2007).
pubmed: 17676053 doi: 10.1038/nrmicro1717
Yashiro, Y., Sakaguchi, Y., Suzuki, T. & Tomita, K. Mechanism of aminoacyl-tRNA acetylation by an aminoacyl-tRNA acetyltransferase AtaT from enterohemorrhagic E. coli. Nat. Commun. 11, 5438 (2020).
pubmed: 33116145 pmcid: 7595197 doi: 10.1038/s41467-020-19281-z
Xue, L. et al. Distinct oligomeric structures of the YoeB–YefM complex provide insights into the conditional cooperativity of type II toxin–antitoxin system. Nucleic Acids Res. 48, 10527–10541 (2020).
pubmed: 32845304 pmcid: 7544224 doi: 10.1093/nar/gkaa706
Skjerning, R. B., Senissar, M., Winther, K. S., Gerdes, K. & Brodersen, D. E. The RES domain toxins of RES-Xre toxin–antitoxin modules induce cell stasis by degrading NAD
pubmed: 30315706 doi: 10.1111/mmi.14150
Bertelsen, M. B. et al. Structural basis for toxin inhibition in the VapXD toxin–antitoxin system. Structure 29, 139–150.e3 (2021).
pubmed: 33096014 doi: 10.1016/j.str.2020.10.002
Freire, D. M. et al. An NAD
pubmed: 30792174 pmcid: 6436930 doi: 10.1016/j.molcel.2019.01.028
Ahidjo, B. A. et al. VapC toxins from Mycobacterium tuberculosis are ribonucleases that differentially inhibit growth and are neutralized by cognate VapB antitoxins. PLoS ONE 6, e21738 (2011).
pubmed: 21738782 pmcid: 3126847 doi: 10.1371/journal.pone.0021738
Nolle, N., Schuster, C. F. & Bertram, R. Two paralogous yefM–yoeB loci from Staphylococcus equorum encode functional toxin–antitoxin systems. Microbiol. (U. Kingd.) 159, 1575–1585 (2013).
doi: 10.1099/mic.0.068049-0
Guérout, A. M. et al. Characterization of the phd-doc and ccd toxin–antitoxin cassettes from Vibrio superintegrons. J. Bacteriol. 195, 2270–2283 (2013).
pubmed: 23475970 pmcid: 3650543 doi: 10.1128/JB.01389-12
Połom, D., Boss, L., Węgrzyn, G., Hayes, F. & Kędzierska, B. Amino acid residues crucial for specificity of toxin–antitoxin interactions in the homologous Axe–Txe and YefM–YoeB complexes. FEBS J. 280, 5906–5918 (2013).
pubmed: 24028219 doi: 10.1111/febs.12517
Minor, D. L. & Kim, P. S. Context-dependent secondary structure formation of a designed protein sequence. Nature 380, 730–734 (1996).
pubmed: 8614471 doi: 10.1038/380730a0
Garcia-Pino, A. et al. Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity. Cell 142, 101–111 (2010).
pubmed: 20603017 doi: 10.1016/j.cell.2010.05.039
Kumar, P., Issac, B., Dodson, E. J., Turkenburg, J. P. & Mande, S. C. Crystal structure of Mycobacterium tuberculosis YefM antitoxin reveals that it is not an intrinsically unstructured protein. J. Mol. Biol. 383, 482–493 (2008).
pubmed: 18793646 doi: 10.1016/j.jmb.2008.08.067
Sterckx, Y. G. J. et al. Small-angle X-ray scattering—and nuclear magnetic resonance-derived conformational ensemble of the highly flexible antitoxin PaaA2. Structure 22, 854–865 (2014).
pubmed: 24768114 doi: 10.1016/j.str.2014.03.012
Chan, W. T., Espinosa, M. & Yeo, C. C. Keeping the wolves at bay: antitoxins of prokaryotic type II toxin–antitoxin systems. Front. Mol. Biosci. 3, https://doi.org/10.3389/fmolb.2016.00009 (2016).
De Jonge, N. et al. Rejuvenation of CcdB-poisoned gyrase by an intrinsically disordered protein domain. Mol. Cell 35, 154–163 (2009).
pubmed: 19647513 doi: 10.1016/j.molcel.2009.05.025
Harms, A., Brodersen, D. E., Mitarai, N. & Gerdes, K. Toxins, targets, and triggers: an overview of toxin–antitoxin biology. Mol. Cell 70, 768–784 (2018).
pubmed: 29398446 doi: 10.1016/j.molcel.2018.01.003
Scheich, C., Kümmel, D., Soumailakakis, D., Heinemann, U. & Büssow, K. Vectors for co-expression of an unrestricted number of proteins. Nucleic Acids Res. 35, e43 (2007).
pubmed: 17311810 pmcid: 1874614 doi: 10.1093/nar/gkm067
Clabbers, M. T. B., Gruene, T., Parkhurst, J. M., Abrahams, J. P. & Waterman, D. G. Electron diffraction data processing with DIALS. Acta Crystallogr. D Struct. Biol. 74, 506–518 (2018).
pubmed: 29872002 pmcid: 6096487 doi: 10.1107/S2059798318007726
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).
pubmed: 31588918 pmcid: 6778852 doi: 10.1107/S2059798319011471
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
pubmed: 20383002 pmcid: 2852313 doi: 10.1107/S0907444910007493
Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).
pubmed: 21460441 pmcid: 3069738 doi: 10.1107/S0907444910045749
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
pubmed: 17681537 doi: 10.1016/j.jmb.2007.05.022
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).
pubmed: 25950237 pmcid: 5298202 doi: 10.1038/nprot.2015.053

Auteurs

Grzegorz J Grabe (GJ)

Department of Microbiology, Harvard Medical School, Boston, MA, USA.

Rachel T Giorgio (RT)

Department of Microbiology, Harvard Medical School, Boston, MA, USA.

Alexander M J Hall (AMJ)

Department of Microbiology, Harvard Medical School, Boston, MA, USA.

Rhodri M L Morgan (RML)

Department of Life Sciences, Imperial College London, London, UK.

Laurent Dubois (L)

Department of Microbiology, Harvard Medical School, Boston, MA, USA.

Tyler A Sisley (TA)

Department of Microbiology, Harvard Medical School, Boston, MA, USA.

Julian A Rycroft (JA)

Department of Microbiology, Harvard Medical School, Boston, MA, USA.

Stephen A Hare (SA)

School of Life Sciences, University of Sussex, Brighton, UK.

Sophie Helaine (S)

Department of Microbiology, Harvard Medical School, Boston, MA, USA. Sophie_Helaine@hms.harvard.edu.
MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK. Sophie_Helaine@hms.harvard.edu.

Articles similaires

Animals Hemiptera Insect Proteins Phylogeny Insecticides
Populus Soil Microbiology Soil Microbiota Fungi
Aerosols Humans Decontamination Air Microbiology Masks
Coal Metagenome Phylogeny Bacteria Genome, Bacterial

Classifications MeSH