Auxiliary interfaces support the evolution of specific toxin-antitoxin pairing.
Journal
Nature chemical biology
ISSN: 1552-4469
Titre abrégé: Nat Chem Biol
Pays: United States
ID NLM: 101231976
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
received:
22
03
2021
accepted:
20
07
2021
pubmed:
25
9
2021
medline:
29
12
2021
entrez:
24
9
2021
Statut:
ppublish
Résumé
Toxin-antitoxin (TA) systems are a large family of genes implicated in the regulation of bacterial growth and its arrest in response to attacks. These systems encode nonsecreted toxins and antitoxins that specifically pair, even when present in several paralogous copies per genome. Salmonella enterica serovar Typhimurium contains three paralogous TacAT systems that block bacterial translation. We determined the crystal structures of the three TacAT complexes to understand the structural basis of specific TA neutralization and the evolution of such specific pairing. In the present study, we show that alteration of a discrete structural add-on element on the toxin drives specific recognition by their cognate antitoxin underpinning insulation of the three pairs. Similar to other TA families, the region supporting TA-specific pairing is key to neutralization. Our work reveals that additional TA interfaces beside the main neutralization interface increase the safe space for evolution of pairing specificity.
Identifiants
pubmed: 34556858
doi: 10.1038/s41589-021-00862-y
pii: 10.1038/s41589-021-00862-y
doi:
Substances chimiques
Antitoxins
0
Bacterial Toxins
0
Recombinant Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1296-1304Subventions
Organisme : Medical Research Council
ID : MR/M009629/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/D524840/1
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 202926/Z/16/Z
Pays : United Kingdom
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Jaffe, A., Ogura, T. & Hiraga, S. Effects of the CCD function of the F plasmid on bacterial growth. J. Bacteriol. 163, 841–849 (1985).
pubmed: 3897195
pmcid: 219208
doi: 10.1128/jb.163.3.841-849.1985
Fineran, P. C. et al. The phage abortive infection system, ToxIN, functions as a protein–RNA toxin–antitoxin pair. Proc. Natl Acad. Sci. USA 106, 894–899 (2009).
pubmed: 19124776
pmcid: 2630095
doi: 10.1073/pnas.0808832106
Helaine, S. et al. Internalization of salmonella by macrophages induces formation of nonreplicating persisters. Science 343, 204–208 (2014).
pubmed: 24408438
pmcid: 6485627
doi: 10.1126/science.1244705
Ross, B. N., Micheva-Viteva, S., Hong-Geller, E. & Torres, A. G. Evaluating the role of Burkholderia pseudomallei K96243 toxins BPSS0390, BPSS0395, and BPSS1584 in persistent infection. Cell. Microbiol. 21, e13096 (2019).
Yamaguchi, Y., Park, J. H. & Inouye, M. Toxin–antitoxin systems in bacteria and archaea. Annu. Rev. Genet. 45, 61–79 (2011).
pubmed: 22060041
doi: 10.1146/annurev-genet-110410-132412
Page, R. & Peti, W. Toxin–antitoxin systems in bacterial growth arrest and persistence. Nat. Chem. Biol. 12, 208–214 (2016).
pubmed: 26991085
doi: 10.1038/nchembio.2044
Huang, C. Y., Gonzalez-Lopez, C., Henry, C., Mijakovic, I. & Ryan, K. R. hipBA toxin–antitoxin systems mediate persistence in Caulobacter crescentus. Sci. Rep. 10, 2865 (2020).
Goulard, C., Langrand, S., Carniel, E. & Chauvaux, S. The Yersinia pestis chromosome encodes active addiction toxins. J. Bacteriol. 192, 3669–3677 (2010).
pubmed: 20472800
pmcid: 2897361
doi: 10.1128/JB.00336-10
Wilbaux, M., Mine, N., Guérout, A. M., Mazel, D. & Van Melderen, L. Functional interactions between coexisting toxin-antitoxin systems of the ccd family in Escherichia coli O157:H7. J. Bacteriol. 189, 2712–2719 (2007).
pubmed: 17259320
pmcid: 1855815
doi: 10.1128/JB.01679-06
Aakre, C. D. et al. Evolving new protein–protein interaction specificity through promiscuous intermediates. Cell 163, 594–606 (2015).
pubmed: 26478181
pmcid: 4623991
doi: 10.1016/j.cell.2015.09.055
Fiebig, A., Castro Rojas, C. M., Siegal-Gaskins, D. & Crosson, S. Interaction specificity, toxicity and regulation of a paralogous set of ParE/RelE-family toxin–antitoxin systems. Mol. Microbiol. 77, 236–251 (2010).
pubmed: 20487277
pmcid: 2907451
doi: 10.1111/j.1365-2958.2010.07207.x
Ramage, H. R., Connolly, L. E. & Cox, J. S. Comprehensive functional analysis of Mycobacterium tuberculosis toxin–antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet 5, e1000767 (2009).
pubmed: 20011113
pmcid: 2781298
doi: 10.1371/journal.pgen.1000767
Hallez, R. et al. New toxins homologous to ParE belonging to three-component toxin-antitoxin systems in Escherichia coli O157:H7. Mol. Microbiol. 76, 719–732 (2010).
pubmed: 20345661
doi: 10.1111/j.1365-2958.2010.07129.x
Cheverton, A. M. et al. A salmonella toxin promotes persister formation through acetylation of tRNA. Mol. Cell 63, 86–96 (2016).
pubmed: 27264868
pmcid: 4942678
doi: 10.1016/j.molcel.2016.05.002
Rycroft, J. A. et al. Activity of acetyltransferase toxins involved in Salmonella persister formation during macrophage infection. Nat. Commun. 9, 1993 (2018).
pubmed: 29777131
pmcid: 5959882
doi: 10.1038/s41467-018-04472-6
Jurenas, D. et al. AtaT blocks translation initiation by N-acetylation of the initiator tRNAfMet. Nat. Chem. Biol. 13, 640–646 (2017).
pubmed: 28369041
doi: 10.1038/nchembio.2346
Ovchinnikov, S. V. et al. Mechanism of translation inhibition by type II GNAT toxin AtaT2. Nucleic Acids Res. 48, 8617–8625 (2020).
pubmed: 32597957
pmcid: 7470980
doi: 10.1093/nar/gkaa551
Wilcox, B. et al. Escherichia coli ItaT is a type II toxin that inhibits translation by acetylating isoleucyl-tRNAIle. Nucleic Acids Res. 46, 7873–7885 (2018).
pubmed: 29931259
pmcid: 6125619
doi: 10.1093/nar/gky560
Qian, H. et al. Identification and characterization of acetyltransferase-type toxin–antitoxin locus in Klebsiella pneumoniae. Mol. Microbiol. 108, 336–349 (2018).
pubmed: 29461656
doi: 10.1111/mmi.13934
McVicker, G. & Tang, C. M. Deletion of toxin–antitoxin systems in the evolution of Shigella sonnei as a host-adapted pathogen. Nat. Microbiol. 2, 16204 (2016).
pubmed: 27819667
doi: 10.1038/nmicrobiol.2016.204
Van Acker, H., Sass, A., Dhondt, I., Nelis, H. J. & Coenye, T. Involvement of toxin–antitoxin modules in Burkholderia cenocepacia biofilm persistence. Pathog. Dis. 71, 326–335 (2014).
pubmed: 24719230
doi: 10.1111/2049-632X.12177
Narimisa, N., Sadeghi Kalani, B., Mohammadzadeh, R. & Masjedian Jazi, F. Combination of antibiotics—nisin reduces the formation of persister cell in Listeria monocytogenes. Microb. Drug Resist. 27, 137–144 (2021).
pubmed: 32429732
doi: 10.1089/mdr.2020.0019
Iqbal, N., Guérout, A. M., Krin, E., Le Roux, F. & Mazel, D. Comprehensive functional analysis of the 18 Vibrio cholerae N16961 toxin–antitoxin systems substantiates their role in stabilizing the superintegron. J. Bacteriol. 197, 2150–2159 (2015).
pubmed: 25897030
pmcid: 4455273
doi: 10.1128/JB.00108-15
Zhang, C., Yashiro, Y., Sakaguchi, Y., Suzuki, T. & Tomita, K. Substrate specificities of Escherichia coli ItaT that acetylates aminoacyl-tRNAs. Nucleic Acids Res. 48, 7532–7544 (2020).
pubmed: 32501503
pmcid: 7367177
Burckhardt, R. M. & Escalante-Semerena, J. C. Small-molecule acetylation by GCN5-related N-acetyltransferases in bacteria. Microbiol. Mol. Biol. Rev. 84, e00090-19 (2020).
Jurėnas, D., Garcia-Pino, A. & Van Melderen, L. Novel toxins from type II toxin–antitoxin systems with acetyltransferase activity. Plasmid 93, 30–35 (2017).
pubmed: 28941941
doi: 10.1016/j.plasmid.2017.08.005
Yashiro, Y., Yamashita, S. & Tomita, K. Crystal structure of the enterohemorrhagic Escherichia coli AtaT–AtaR toxin–antitoxin complex. Structure 27, 476–484.e3 (2019).
pubmed: 30612860
doi: 10.1016/j.str.2018.11.005
Jurėnas, D., Van Melderen, L. & Garcia-Pino, A. Mechanism of regulation and neutralization of the AtaR–AtaT toxin–antitoxin system. Nat. Chem. Biol. 15, 285–294 (2019).
pubmed: 30718814
doi: 10.1038/s41589-018-0216-z
Qian, H. et al. Toxin–antitoxin operon kacAT of Klebsiella pneumoniae is regulated by conditional cooperativity via a W-shaped KacA-KacT complex. Nucleic Acids Res. 47, 7690–7702 (2019).
pubmed: 31260525
pmcid: 6698736
doi: 10.1093/nar/gkz563
Walling, L. R. & Butler, J. S. Structural determinants for antitoxin identity and insulation of cross talk between homologous toxin–antitoxin systems. J. Bacteriol. 198, 3287–3295 (2016).
pubmed: 27672196
pmcid: 5116932
doi: 10.1128/JB.00529-16
Plach, M. G. et al. Evolutionary diversification of protein–protein interactions by interface add-ons. Proc. Natl Acad. Sci. USA 114, E8333–E8342 (2017).
pubmed: 28923934
pmcid: 5635890
doi: 10.1073/pnas.1707335114
Lite, T.-L. V. et al. Uncovering the basis of protein-protein interaction specificity with a combinatorially complete library. eLife 9, e60924 (2020).
Balakrishnan, S., Kamisetty, H., Carbonell, J. G., Lee, S. I. & Langmead, C. J. Learning generative models for protein fold families. Proteins Struct. Funct. Bioinform. 79, 1061–1078 (2011).
doi: 10.1002/prot.22934
Schreiter, E. R. & Drennan, C. L. Ribbon–helix–helix transcription factors: variations on a theme. Nat. Rev. Microbiol. 5, 710–720 (2007).
pubmed: 17676053
doi: 10.1038/nrmicro1717
Yashiro, Y., Sakaguchi, Y., Suzuki, T. & Tomita, K. Mechanism of aminoacyl-tRNA acetylation by an aminoacyl-tRNA acetyltransferase AtaT from enterohemorrhagic E. coli. Nat. Commun. 11, 5438 (2020).
pubmed: 33116145
pmcid: 7595197
doi: 10.1038/s41467-020-19281-z
Xue, L. et al. Distinct oligomeric structures of the YoeB–YefM complex provide insights into the conditional cooperativity of type II toxin–antitoxin system. Nucleic Acids Res. 48, 10527–10541 (2020).
pubmed: 32845304
pmcid: 7544224
doi: 10.1093/nar/gkaa706
Skjerning, R. B., Senissar, M., Winther, K. S., Gerdes, K. & Brodersen, D. E. The RES domain toxins of RES-Xre toxin–antitoxin modules induce cell stasis by degrading NAD
pubmed: 30315706
doi: 10.1111/mmi.14150
Bertelsen, M. B. et al. Structural basis for toxin inhibition in the VapXD toxin–antitoxin system. Structure 29, 139–150.e3 (2021).
pubmed: 33096014
doi: 10.1016/j.str.2020.10.002
Freire, D. M. et al. An NAD
pubmed: 30792174
pmcid: 6436930
doi: 10.1016/j.molcel.2019.01.028
Ahidjo, B. A. et al. VapC toxins from Mycobacterium tuberculosis are ribonucleases that differentially inhibit growth and are neutralized by cognate VapB antitoxins. PLoS ONE 6, e21738 (2011).
pubmed: 21738782
pmcid: 3126847
doi: 10.1371/journal.pone.0021738
Nolle, N., Schuster, C. F. & Bertram, R. Two paralogous yefM–yoeB loci from Staphylococcus equorum encode functional toxin–antitoxin systems. Microbiol. (U. Kingd.) 159, 1575–1585 (2013).
doi: 10.1099/mic.0.068049-0
Guérout, A. M. et al. Characterization of the phd-doc and ccd toxin–antitoxin cassettes from Vibrio superintegrons. J. Bacteriol. 195, 2270–2283 (2013).
pubmed: 23475970
pmcid: 3650543
doi: 10.1128/JB.01389-12
Połom, D., Boss, L., Węgrzyn, G., Hayes, F. & Kędzierska, B. Amino acid residues crucial for specificity of toxin–antitoxin interactions in the homologous Axe–Txe and YefM–YoeB complexes. FEBS J. 280, 5906–5918 (2013).
pubmed: 24028219
doi: 10.1111/febs.12517
Minor, D. L. & Kim, P. S. Context-dependent secondary structure formation of a designed protein sequence. Nature 380, 730–734 (1996).
pubmed: 8614471
doi: 10.1038/380730a0
Garcia-Pino, A. et al. Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity. Cell 142, 101–111 (2010).
pubmed: 20603017
doi: 10.1016/j.cell.2010.05.039
Kumar, P., Issac, B., Dodson, E. J., Turkenburg, J. P. & Mande, S. C. Crystal structure of Mycobacterium tuberculosis YefM antitoxin reveals that it is not an intrinsically unstructured protein. J. Mol. Biol. 383, 482–493 (2008).
pubmed: 18793646
doi: 10.1016/j.jmb.2008.08.067
Sterckx, Y. G. J. et al. Small-angle X-ray scattering—and nuclear magnetic resonance-derived conformational ensemble of the highly flexible antitoxin PaaA2. Structure 22, 854–865 (2014).
pubmed: 24768114
doi: 10.1016/j.str.2014.03.012
Chan, W. T., Espinosa, M. & Yeo, C. C. Keeping the wolves at bay: antitoxins of prokaryotic type II toxin–antitoxin systems. Front. Mol. Biosci. 3, https://doi.org/10.3389/fmolb.2016.00009 (2016).
De Jonge, N. et al. Rejuvenation of CcdB-poisoned gyrase by an intrinsically disordered protein domain. Mol. Cell 35, 154–163 (2009).
pubmed: 19647513
doi: 10.1016/j.molcel.2009.05.025
Harms, A., Brodersen, D. E., Mitarai, N. & Gerdes, K. Toxins, targets, and triggers: an overview of toxin–antitoxin biology. Mol. Cell 70, 768–784 (2018).
pubmed: 29398446
doi: 10.1016/j.molcel.2018.01.003
Scheich, C., Kümmel, D., Soumailakakis, D., Heinemann, U. & Büssow, K. Vectors for co-expression of an unrestricted number of proteins. Nucleic Acids Res. 35, e43 (2007).
pubmed: 17311810
pmcid: 1874614
doi: 10.1093/nar/gkm067
Clabbers, M. T. B., Gruene, T., Parkhurst, J. M., Abrahams, J. P. & Waterman, D. G. Electron diffraction data processing with DIALS. Acta Crystallogr. D Struct. Biol. 74, 506–518 (2018).
pubmed: 29872002
pmcid: 6096487
doi: 10.1107/S2059798318007726
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).
pubmed: 31588918
pmcid: 6778852
doi: 10.1107/S2059798319011471
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
pubmed: 20383002
pmcid: 2852313
doi: 10.1107/S0907444910007493
Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).
pubmed: 21460441
pmcid: 3069738
doi: 10.1107/S0907444910045749
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
pubmed: 17681537
doi: 10.1016/j.jmb.2007.05.022
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).
pubmed: 25950237
pmcid: 5298202
doi: 10.1038/nprot.2015.053