Sensitive and quantitative detection of cardiac troponin I with upconverting nanoparticle lateral flow test with minimized interference.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
21 09 2021
21 09 2021
Historique:
received:
11
04
2021
accepted:
06
09
2021
entrez:
22
9
2021
pubmed:
23
9
2021
medline:
31
12
2021
Statut:
epublish
Résumé
Measurement of cardiac troponin I (cTnI) should be feasible for point-of-care testing (POCT) to diagnose acute myocardial infarction (AMI). Lateral flow immunoassays (LFIAs) have been long implemented in POCT and clinical settings. However, sensitivity, matrix effect and quantitation in lateral flow immunoassays (LFIAs) have been major limiting factors. The performance of LFIAs can be improved with upconverting nanoparticle (UCNP) reporters. Here we report a new methodological approach to quantify cTnI using UCNP-LFIA technology with minimized plasma interference. The performance of the developed UCNP-LFIA was evaluated using clinical plasma samples (n = 262). The developed UCNP-LFIA was compared to two reference assays, the Siemens Advia Centaur assay and an in-house well-based cTnI assay. By introducing an anti-IgM scrub line and dried EDTA in the LFIA strip, the detection of cTnI in plasma samples was fully recovered. The UCNP-LFIA was able to quantify cTnI concentrations in patient samples within the range of 30-10,000 ng/L. The LoB and LoD of the UCNP-LFIA were 8.4 ng/L and 30 ng/L. The method comparisons showed good correlation (Spearman's correlation 0.956 and 0.949, p < 0.0001). The developed UCNP-LFIA had LoD suitable for ruling in AMI in patients with elevated cTnI levels and was able to quantify cTnI concentrations in patient samples. The technology has potential to provide simple and rapid assay for POCT in ED setting.
Identifiants
pubmed: 34548577
doi: 10.1038/s41598-021-98199-y
pii: 10.1038/s41598-021-98199-y
pmc: PMC8455528
doi:
Substances chimiques
Troponin I
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
18698Informations de copyright
© 2021. The Author(s).
Références
Clin Chem. 2012 Jan;58(1):169-71
pubmed: 21940657
Anal Chem. 2018 Nov 6;90(21):12356-12360
pubmed: 30335361
Clin Biochem. 2007 Dec;40(18):1406-13
pubmed: 17942088
J Am Coll Cardiol. 2019 Mar 12;73(9):1059-1077
pubmed: 30798981
Clin Biochem. 2011 Oct;44(14-15):1241-6
pubmed: 21763300
Best Pract Res Clin Endocrinol Metab. 2013 Oct;27(5):647-61
pubmed: 24094636
Am J Clin Pathol. 2016 Sep;146(3):346-52
pubmed: 27543980
Clin Chem. 1999 May;45(5):616-8
pubmed: 10222346
Eur Heart J. 2012 Oct;33(20):2551-67
pubmed: 22922414
Clin Chem Lab Med. 2015 Apr;53(5):665-76
pubmed: 25324453
Anal Chem. 2020 Dec 15;92(24):15766-15772
pubmed: 33228352
Eur Heart J. 2010 Sep;31(18):2197-204
pubmed: 20685679
ACS Nano. 2017 Jun 27;11(6):6261-6270
pubmed: 28482150
Arthritis. 2011;2011:741071
pubmed: 22046523
Circulation. 1993 Jul;88(1):101-6
pubmed: 8319322
Anal Bioanal Chem. 2021 Feb;413(4):967-978
pubmed: 33230700
Crit Rev Clin Lab Sci. 2017 Nov - Dec;54(7-8):471-494
pubmed: 29169287
Clin Chem. 2012 Jun;58(6):1040-8
pubmed: 22490617
Clin Chem. 1996 Dec;42(12):2046
pubmed: 8969651
J Clin Microbiol. 2008 Jan;46(1):171-6
pubmed: 17942645
Commun Biol. 2020 Aug 21;3(1):460
pubmed: 32826955
Eur Heart J. 2014 Mar;35(9):552-6
pubmed: 24357507
ACS Nano. 2018 Jun 26;12(6):5834-5847
pubmed: 29750504
Clin Exp Immunol. 1993 Nov;94(2):291-6
pubmed: 8222320
Clin Chem. 2013 Mar;59(3):512-8
pubmed: 23288486
Clin Chem. 2006 Sep;52(9):1685-92
pubmed: 16858078
J Immunol Methods. 1989 Jul 6;121(1):85-93
pubmed: 2502577
Angew Chem Int Ed Engl. 2011 Jun 20;50(26):5808-29
pubmed: 21626614
Biosensors (Basel). 2018 Nov 21;8(4):
pubmed: 30469415
Emerg Med J. 2010 Mar;27(3):194-8
pubmed: 20304883
Talanta. 2019 Aug 15;201:126-133
pubmed: 31122402
Clin Biochem. 2015 Mar;48(4-5):347-52
pubmed: 25111014