Amyloid pathology and synaptic loss in pathological aging.


Journal

Journal of neurochemistry
ISSN: 1471-4159
Titre abrégé: J Neurochem
Pays: England
ID NLM: 2985190R

Informations de publication

Date de publication:
10 2021
Historique:
revised: 24 07 2021
received: 30 10 2020
accepted: 26 07 2021
pubmed: 3 9 2021
medline: 20 11 2021
entrez: 2 9 2021
Statut: ppublish

Résumé

Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory dysfunction and cognitive decline. Pathological aging (PA) describes patients who are amyloid-positive but cognitively unimpaired at time of death. Both AD and PA contain amyloid plaques dominated by amyloid β (Aβ) peptides. In this study, we investigated and compared synaptic protein levels, amyloid plaque load, and Aβ peptide patterns between AD and PA. Two cohorts of post-mortem brain tissue were investigated. In the first, consisting of controls, PA, AD, and familial AD (FAD) individuals, synaptic proteins extracted with tris(hydroxymethyl)aminomethane-buffered saline (TBS) were analyzed. In the second, consisting of tissue from AD and PA patients from three different regions (occipital lobe, frontal lobe, and cerebellum), a two-step extraction was performed. Five synaptic proteins were extracted using TBS, and from the remaining portion Aβ peptides were extracted using formic acid. Subsequently, immunoprecipitation with several antibodies targeting different proteins/peptides was performed for both fractions, which were subsequently analyzed by mass spectrometry. The levels of synaptic proteins were lower in AD (and FAD) compared with PA (and controls), confirming synaptic loss in AD patients. The amyloid plaque load was increased in AD compared with PA, and the relative amount of Aβ40 was higher in AD while for Aβ42 it was higher in PA. In AD loss of synaptic function was associated with increased plaque load and increased amounts of Aβ40 compared with PA cases, suggesting that synaptic function is preserved in PA cases even in the presence of Aβ.

Identifiants

pubmed: 34473357
doi: 10.1111/jnc.15487
doi:

Substances chimiques

Amyloid beta-Peptides 0
Nerve Tissue Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

258-272

Informations de copyright

© 2021 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

Références

Attems, J., Jellinger, K., Thal, D. R., & Van Nostrand, W. (2011). Review: sporadic cerebral amyloid angiopathy. Neuropathology and Applied Neurobiology, 37, 75-93. https://doi.org/10.1111/j.1365-2990.2010.01137.x.
Bankhead, P., Loughrey, M. B., Fernández, J. A., Dombrowski, Y., McArt, D. G., Dunne, P. D., McQuaid, S., Gray, R. T., Murray, L. J., Coleman, H. G., James, J. A., Salto-Tellez, M., & Hamilton, P. W. (2017). QuPath: Open source software for digital pathology image analysis. Scientific Reports, 7, 16878. https://doi.org/10.1038/s41598-017-17204-5.
Barthet, G., Jorda-Siquier, T., Rumi-Masante, J., Bernadou, F., Mueller, U., & Mulle, C. (2018). Presenilin-mediated cleavage of APP regulates synaptotagmin-7 and presynaptic plasticity. Nature Communications, 9, 4780. https://doi.org/10.1038/s41467-018-06813-x.
Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82, 239-259. https://doi.org/10.1007/BF00308809.
Brinkmalm, A., Brinkmalm, G., Honer, W. G., Frölich, L., Hausner, L., Minthon, L., Hansson, O., Wallin, A., Zetterberg, H., Blennow, K., & Öhrfelt, A. (2014). SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer's disease. Molecular Neurodegeneration, 9, 53. https://doi.org/10.1186/1750-1326-9-53.
Brinkmalm, A., Brinkmalm, G., Honer, W. G., Moreno, J. A., Jakobsson, J., Mallucci, G. R., Zetterberg, H., Blennow, K., & Ohrfelt, A. (2014b). Targeting synaptic pathology with a novel affinity mass spectrometry approach. Molecular & Cellular Proteomics: MCP, 13, 2584-2592. https://doi.org/10.1074/mcp.M114.040113.
Brinkmalm, A., Brinkmalm, G., Honer, W. G., Moreno, J. A., Jakobsson, J., Mallucci, G. R., Zetterberg, H., Blennow, K., & Öhrfelt, A. (2014c). Targeting synaptic pathology with a novel affinity mass spectrometry approach. Molecular & Cellular Proteomics, 13, 2584-2592. https://doi.org/10.1074/mcp.M114.040113.
Brinkmalm, G., Hong, W., Wang, Z., Liu, W., O’Malley, T., Sun, X., Frosch, M., Selkoe, D., Portelius, E., Zetterberg, H., Blennow, K., & Walsh, D. (2019). Identification of neurotoxic cross-linked amyloid-β dimers in the Alzheimer’s brain. Brain, 142(5), 1441-1457. http://doi.org/10.1093/brain/awz066
Brinkmalm, G., Portelius, E., Öhrfelt, A., Mattsson, N., Persson, R., Gustavsson, M., Vite, C., Gobom, J., Månsson, J.E., Nilsson, J., Halim, A., Larson, G., Rüetschi, U., Zetterberg, H., Blennow, K., & Brinkmalm, A. (2012). An online nano-LC-ESI-FTICR-MS method for comprehensive characterization of endogenous fragments from amyloid β and amyloid precursor protein in human and cat cerebrospinal fluid. Journal of Mass Spectrometry, 47(5), 591-603. http://doi.org/10.1002/jms.2987
Chen, Y., Fu, A. K. Y., & Ip, N. Y. (2019). Synaptic dysfunction in Alzheimer's disease: Mechanisms and therapeutic strategies. Pharmacology & Therapeutics, 195, 186-198. https://doi.org/10.1016/j.pharmthera.2018.11.006.
Clarke, M. T. M., Brinkmalm, A., Foiani, M. S., Woollacott, I. O. C., Heller, C., Heslegrave, A., Keshavan, A., Fox, N. C., Schott, J. M., Warren, J. D., Blennow, K., Zetterberg, H., & Rohrer, J. D. (2019). CSF synaptic protein concentrations are raised in those with atypical Alzheimer's disease but not frontotemporal dementia. Alzheimer's Research & Therapy, 11, 105. https://doi.org/10.1186/s13195-019-0564-2.
Cline, E. N., Bicca, M. A., Viola, K. L., & Klein, W. L. (2018). The amyloid-beta oligomer hypothesis: Beginning of the third decade. Journal of Alzheimer's Disease, 64, S567-S610.
Courtney, N. A., Bao, H., Briguglio, J. S., & Chapman, E. R. (2019). Synaptotagmin 1 clamps synaptic vesicle fusion in mammalian neurons independent of complexin. Nature Communications, 10, 4076. https://doi.org/10.1038/s41467-019-12015-w.
Davidsson, P., & Blennow, K. (1998). Neurochemical dissection of synaptic pathology in Alzheimer's disease. International Psychogeriatrics, 10, 11-23. https://doi.org/10.1017/S1041610298005110.
DeKosky, S. T., Ikonomovic, M. D., Styren, S. D., Beckett, L., Wisniewski, S., Bennett, D. A., Cochran, E. J., Kordower, J. H., & Mufson, E. J. (2002). Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 51, 145-155. https://doi.org/10.1002/ana.10069.
Fang, X. T., Hultqvist, G., Meier, S. R., Antoni, G., Sehlin, D., & Syvanen, S. (2019). High detection sensitivity with antibody-based PET radioligand for amyloid beta in brain. NeuroImage, 184, 881-888. https://doi.org/10.1016/j.neuroimage.2018.10.011.
Galasko, D., Xiao, M., Xu, D., Smirnov, D., Salmon, D. P., Dewit, N., Vanbrabant, J., Jacobs, D., Vanderstichele, H., Vanmechelen, E., & Worley, P. (2019). Synaptic biomarkers in CSF aid in diagnosis, correlate with cognition and predict progression in MCI and Alzheimer's disease. Alzheimers Dement (N Y), 5, 871-882. https://doi.org/10.1016/j.trci.2019.11.002.
Gkanatsiou, E., Portelius, E., Toomey, C. E., Blennow, K., Zetterberg, H., Lashley, T., & Brinkmalm, G. (2019). A distinct brain beta amyloid signature in cerebral amyloid angiopathy compared to Alzheimer's disease. Neuroscience Letters, 701, 125-131. https://doi.org/10.1016/j.neulet.2019.02.033.
Hardy, J. A., & Higgins, G. A. (1992). Alzheimer's disease: The amyloid cascade hypothesis. Science, 256, 184-185. https://doi.org/10.1126/science.1566067.
Hyman, B. T., Phelps, C. H., Beach, T. G., Bigio, E. H., Cairns, N. J., Carrillo, M. C., Dickson, D. W., Duyckaerts, C., Frosch, M. P., Masliah, E., Mirra, S. S., Nelson, P. T., Schneider, J. A., Thal, D. R., Thies, B., Trojanowski, J. Q., Vinters, H. V., & Montine, T. J. (2012). National institute on Aging-Alzheimer's association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimer's & Dementia: the Journal of the Alzheimer's Association, 8, 1-13. https://doi.org/10.1016/j.jalz.2011.10.007.
Ikonomovic, M. D., Buckley, C. J., Abrahamson, E. E., Kofler, J. K., Mathis, C. A., Klunk, W. E., & Farrar, G. (2020). Post-mortem analyses of PiB and flutemetamol in diffuse and cored amyloid-beta plaques in Alzheimer's disease. Acta Neuropathologica, 140, 463-476.
Irfan, M., Gopaul, K. R., Miry, O., Hökfelt, T., Stanton, P. K., & Bark, C. (2019). SNAP-25 isoforms differentially regulate synaptic transmission and long-term synaptic plasticity at central synapses. Scientific Reports, 9, 1-14. https://doi.org/10.1038/s41598-019-42833-3.
Iwatsubo, T., Mann, D. M., Odaka, A., Suzuki, N., & Ihara, Y. (1995). Amyloid beta protein (A beta) deposition: A beta 42(43) precedes A beta 40 in Down syndrome. Annals of Neurology, 37, 294-299.
Iwatsubo, T., Odaka, A., Suzuki, N., Mizusawa, H., Nukina, N., & Ihara, Y. (1994a). Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: Evidence that an initially deposited species is A beta 42(43). Neuron, 13, 45-53.
Iwatsubo, T., Odaka, A., Suzuki, N., Mizusawa, H., Nukina, N., & Ihara, Y. (1994b). Visualization of Aβ42 (43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: Evidence that an initially deposited species is Aβ42 (43). Neuron, 13, 45-53. https://doi.org/10.1016/0896-6273(94)90458-8.
Jack, C. R., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., Aisen, P. S., Shaw, L. M., Vemuri, P., Wiste, H. J., Weigand, S. D., Lesnick, T. G., Pankratz, V. S., Donohue, M. C., & Trojanowski, J. Q. (2013a). Tracking pathophysiological processes in Alzheimer's disease: An updated hypothetical model of dynamic biomarkers. The Lancet Neurology, 12, 207-216. https://doi.org/10.1016/S1474-4422(12)70291-0.
Jack, C. R., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., Aisen, P. S., Shaw, L. M., Vemuri, P., Wiste, H. J., Weigand, S. D., Lesnick, T. G., Pankratz, V. S., Donohue, M. C., & Trojanowski, J. Q. (2013b). Tracking pathophysiological processes in Alzheimer's disease: An updated hypothetical model of dynamic biomarkers. The Lancet Neurology, 12, 207-216. https://doi.org/10.1016/S1474-4422(12)70291-0.
Kvartsberg, H., Lashley, T., Murray, C. E., Brinkmalm, G., Cullen, N. C., Hoglund, K., Zetterberg, H., Blennow, K., & Portelius, E. (2019). The intact postsynaptic protein neurogranin is reduced in brain tissue from patients with familial and sporadic Alzheimer's disease. Acta Neuropathologica, 137, 89-102. https://doi.org/10.1007/s00401-018-1910-3.
Mattsson, N., Palmqvist, S., Stomrud, E., Vogel, J., & Hansson, O. (2019). Staging beta-amyloid pathology with amyloid positron emission tomography. JAMA Neurology, 76(11), 1319-1329. https://doi.org/10.1001/jamaneurol.2019.2214
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA Work Group under the auspices of department of health and human services task force on Alzheimer's disease. Neurology, 34, 939-944. https://doi.org/10.1212/WNL.34.7.939.
Medina, N., Huth-Fehre, T., Westman, A., & Sundqvist, B. (1994). Matrix-assisted laser desorption: Dependence of the threshold fluence on analyte concentration. Organic Mass Spectrometry, 29, 207-209. https://doi.org/10.1002/oms.1210290410.
Michno, W., Nyström, S., Wehrli, P., Lashley, T., Brinkmalm, G., Guerard, L., Syvänen, S., Sehlin, D., Kaya I., Brinet, D., Nilsson, K. P. R., Hammarström, P., Blennow, K., Zetterberg, H., & Hanrieder, J. (2019). Pyroglutamation of amyloid-βx-42 (Aβx-42) followed by Aβ1-40 deposition underlies plaque polymorphism in progressing Alzheimer’s disease pathology. Journal of Biological Chemistry, 294(17), 6719-6732. http://doi.org/10.1074/jbc.ra118.006604
Mohrmann, R., de Wit, H., Connell, E., Pinheiro, P. S., Leese, C., Bruns, D., Davletov, B., Verhage, M., & Sørensen, J. B. (2013). Synaptotagmin interaction with SNAP-25 governs vesicle docking, priming, and fusion triggering. Journal of Neuroscience, 33, 14417-14430. https://doi.org/10.1523/JNEUROSCI.1236-13.2013.
Montine, T. J., Phelps, C. H., Beach, T. G., Bigio, E. H., Cairns, N. J., Dickson, D. W., Duyckaerts, C., Frosch, M. P., Masliah, E., Mirra, S. S., Nelson, P. T., Schneider, J. A., Thal, D. R., Trojanowski, J. Q., Vinters, H. V., & Hyman, B. T. (2012). National institute on aging-Alzheimer's association guidelines for the neuropathologic assessment of Alzheimer's disease: A practical approach. Acta Neuropathologica, 123, 1-11. https://doi.org/10.1007/s00401-011-0910-3.
Mori, H., Takio, K., Ogawara, M., & Selkoe, D. (1992). Mass spectrometry of purified amyloid beta protein in Alzheimer's disease. Journal of Biological Chemistry, 267, 17082-17086. https://doi.org/10.1016/S0021-9258(18)41896-0.
Mucke, L., & Selkoe, D. J. (2012). Neurotoxicity of amyloid beta-protein: Synaptic and network dysfunction. Cold Spring Harbor Perspectives in Medicine, 2, a006338.
Naslund, J., Schierhorn, A., Hellman, U., Lannfelt, L., Roses, A. D., Tjernberg, L. O., Silberring, J., Gandy, S. E., Winblad, B., & Greengard, P. (1994). Relative abundance of Alzheimer A beta amyloid peptide variants in Alzheimer disease and normal aging. Proceedings of the National Academy of Sciences, 91, 8378-8382. https://doi.org/10.1073/pnas.91.18.8378.
Öhrfelt, A., Brinkmalm, A., Dumurgier, J., Brinkmalm, G., Hansson, O., Zetterberg, H., Bouaziz-Amar, E., Hugon, J., Paquet, C., & Blennow, K. (2016). The pre-synaptic vesicle protein synaptotagmin is a novel biomarker for Alzheimer's disease. Alzheimer's Research & Therapy, 8, 41. https://doi.org/10.1186/s13195-016-0208-8.
Öhrfelt, A., Zetterberg, H., Andersson, K., Persson, R., Secic, D., Brinkmalm, G., Wallin, A., Mulugeta, E., Francis, P., Vanmechelen, E., Aarsland, D., Ballard, C., Blennow, K., & Westman-Brinkmalm, A. (2011). Identification of novel α-Synuclein isoforms in human brain tissue by using an online nanoLC-ESI-FTICR-MS method. Neurochemical Research, 36(11), 2029-2042. http://doi.org/10.1007/s11064-011-0527-x
Overk, C. R., & Masliah, E. (2014). Pathogenesis of synaptic degeneration in Alzheimer's disease and Lewy body disease. Biochemical Pharmacology, 88, 508-516. https://doi.org/10.1016/j.bcp.2014.01.015.
Patterson, C. (2018). World Alzheimer report 2018: the state of the art of dementia research: new frontiers. Alzheimer’s Disease International (ADI): London, UK.
Peretti, D., Bastide, A., Radford, H., Verity, N., Molloy, C., Martin, M. G., Moreno, J. A., Steinert, J. R., Smith, T., Dinsdale, D., Willis, A. E., & Mallucci, G. R. (2015). RBM3 mediates structural plasticity and protective effects of cooling in neurodegeneration. Nature, 518, 236. https://doi.org/10.1038/nature14142.
Pike, K. E., Ellis, K. A., Villemagne, V. L., Good, N., Chételat, G., Ames, D., Szoeke, C., Laws, S. M., Verdile, G., Martins, R. N., Masters, C. L., & Rowe, C. C. (2011). Cognition and beta-amyloid in preclinical Alzheimer's disease: Data from the AIBL study. Neuropsychologia, 49, 2384-2390. https://doi.org/10.1016/j.neuropsychologia.2011.04.012.
Portelius, E., Tran, A. J., Andreasson, U., Persson, R., Brinkmalm, G., Zetterberg, H., Blennow, K., & Westman-Brinkmalm, A. (2007). Characterization of amyloid beta peptides in cerebrospinal fluid by an automated immunoprecipitation procedure followed by mass spectrometry. Journal of Proteome Research, 6, 4433-4439.
Reddy, P. H., Mani, G., Park, B. S., Jacques, J., Murdoch, G., Whetsell, W. Jr, Kaye, J., & Manczak, M. (2005). Differential loss of synaptic proteins in Alzheimer's disease: Implications for synaptic dysfunction. Journal of Alzheimer's Disease, 7, 103-117. https://doi.org/10.3233/JAD-2005-7203.
Revesz, T., Holton, J. L., Lashley, T., Plant, G., Frangione, B., Rostagno, A., & Ghiso, J. (2009). Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathologica, 118, 115-130. https://doi.org/10.1007/s00401-009-0501-8.
Rijal Upadhaya, A., Kosterin, I., Kumar, S., von Arnim, C. A., Yamaguchi, H., Fandrich, M., Walter, J., & Thal, D. R. (2014). Biochemical stages of amyloid-beta peptide aggregation and accumulation in the human brain and their association with symptomatic and pathologically preclinical Alzheimer's disease. Brain, 137, 887-903.
Rossetti, H. C., Munro Cullum, C., Hynan, L. S., & Lacritz, L. H. (2010). The CERAD neuropsychologic battery total score and the progression of Alzheimer disease. Alzheimer Disease and Associated Disorders, 24, 138-142. https://doi.org/10.1097/WAD.0b013e3181b76415.
Sehlin, D., & Syvanen, S. (2019). Engineered antibodies: New possibilities for brain PET? European Journal of Nuclear Medicine and Molecular Imaging, 46, 2848-2858. https://doi.org/10.1007/s00259-019-04426-0.
Skrobot, O. A., Attems, J., Esiri, M., Hortobágyi, T., Ironside, J. W., Kalaria, R. N., King, A., Lammie, G. A., Mann, D., Neal, J., Ben-Shlomo, Y., Kehoe, P. G., & Love, S. (2016). Vascular cognitive impairment neuropathology guidelines (VCING): The contribution of cerebrovascular pathology to cognitive impairment. Brain, 139, 2957-2969. https://doi.org/10.1093/brain/aww214.
Sofola-Adesakin, O., Khericha, M., Snoeren, I., Tsuda, L., & Partridge, L. (2016). pGluAbeta increases accumulation of Abeta in vivo and exacerbates its toxicity. Acta Neuropathologica Communications, 4, 109.
Südhof, T. C. (2004). The synaptic vesicle cycle. Annual Review of Neuroscience, 27, 509-547.
Sugita, S., Shin, O. H., Han, W., Lao, Y., & Südhof, T. C. (2002). Synaptotagmins form a hierarchy of exocytotic Ca2+ sensors with distinct Ca2+ affinities. The EMBO Journal, 21, 270-280.
Sze, C.-I., Troncoso, J. C., Kawas, C., Mouton, P., Price, D. L., & Martin, L. J. (1997). Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. Journal of Neuropathology & Experimental Neurology, 56, 933-944. https://doi.org/10.1097/00005072-199708000-00011.
Tamaoka, A., Sawamura, N., Odaka, A., Suzuki, N., Mizusawa, H., Shoji, S., & Mori, H. (1995). Amyloid beta protein 1-42/43 (A beta 1-42/43) in cerebellar diffuse plaques: Enzyme-linked immunosorbent assay and immunocytochemical study. Brain Research, 679, 151-156.
Tekirian, T. L., Yang, A. Y., Glabe, C., & Geddes, J. W. (1999). Toxicity of pyroglutaminated amyloid beta-peptides 3(pE)-40 and -42 is similar to that of A beta1-40 and -42. Journal of Neurochemistry, 73, 1584-1589.
Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R., Hansen, L. A., & Katzman, R. (1991). Physical basis of cognitive alterations in Alzheimer's disease: Synapse loss is the major correlate of cognitive impairment. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 30, 572-580. https://doi.org/10.1002/ana.410300410.
Thal, D. R., Rub, U., Orantes, M., & Braak, H. (2002). Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology, 58, 1791-1800.
Tible, M., Sandelius, Å., Höglund, K., Brinkmalm, A., Cognat, E., Dumurgier, J., Hugon, J., Paquet, C., & Blennow, K. (2020). Dissection of synaptic pathways through the analysis of cerebrospinal fluid biomarkers: A combined tool for predicting Alzheimer’s disease. Neurology, 95(8), 953-961.
Wang, D.-S., Lipton, R. B., Katz, M. J., Davies, P., Buschke, H., Kuslansky, G., Verghese, J., Younkin, S. G., Eckman, C., & Dickson, D. W. (2005). Decreased neprilysin immunoreactivity in Alzheimer disease, but not in pathological aging. Journal of Neuropathology and Experimental Neurology, 64, 378-385. https://doi.org/10.1093/jnen/64.5.378.
Westman, A., Huth-Fehre, T., Plamen, D., Bielawski, J., Medina, N., Sundqvist, B., & Karas, M. (1994). Matrix-assisted laser desorption/ionization: Dependence of the ion yield on the laser beam incidence angle. Rapid Communications in Mass Spectrometry, 8, 388-393. https://doi.org/10.1002/rcm.1290080510.
Yan, Y., & Wang, C. (2006). Abeta42 is more rigid than Abeta40 at the C terminus: Implications for Abeta aggregation and toxicity. Journal of Molecular Biology, 364, 853-862.

Auteurs

Eleni Gkanatsiou (E)

Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.

Johanna Nilsson (J)

Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.

Christina E Toomey (CE)

The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK.
UK Dementia Research Institute at UCL, London, UK.
Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.

Agathe Vrillon (A)

Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, University of Paris Diderot, Paris, France.

Hlin Kvartsberg (H)

Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.

Erik Portelius (E)

Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.

Henrik Zetterberg (H)

Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
UK Dementia Research Institute at UCL, London, UK.
Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.
Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China.

Kaj Blennow (K)

Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.

Ann Brinkmalm (A)

Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.

Tammaryn Lashley (T)

The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK.
Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.

Gunnar Brinkmalm (G)

Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH