The bowfin genome illuminates the developmental evolution of ray-finned fishes.


Journal

Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904

Informations de publication

Date de publication:
09 2021
Historique:
received: 13 10 2020
accepted: 13 07 2021
pubmed: 1 9 2021
medline: 15 10 2021
entrez: 31 8 2021
Statut: ppublish

Résumé

The bowfin (Amia calva) is a ray-finned fish that possesses a unique suite of ancestral and derived phenotypes, which are key to understanding vertebrate evolution. The phylogenetic position of bowfin as a representative of neopterygian fishes, its archetypical body plan and its unduplicated and slowly evolving genome make bowfin a central species for the genomic exploration of ray-finned fishes. Here we present a chromosome-level genome assembly for bowfin that enables gene-order analyses, settling long-debated neopterygian phylogenetic relationships. We examine chromatin accessibility and gene expression through bowfin development to investigate the evolution of immune, scale, respiratory and fin skeletal systems and identify hundreds of gene-regulatory loci conserved across vertebrates. These resources connect developmental evolution among bony fishes, further highlighting the bowfin's importance for illuminating vertebrate biology and diversity in the genomic era.

Identifiants

pubmed: 34462605
doi: 10.1038/s41588-021-00914-y
pii: 10.1038/s41588-021-00914-y
pmc: PMC8423624
doi:

Substances chimiques

Chromatin 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

1373-1384

Subventions

Organisme : NIH HHS
ID : R01 OD011116
Pays : United States

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2021. The Author(s).

Références

Jarvik, J. Basic Structure and Evolution of Vertebrates Vol. 1 (Academic Press, 1980).
Burr, B. M. & Bennett, M. G. in Freshwater Fishes of North America 1 (eds Warren, M. L. & Burr, M. G.) (John Hopkins University Press, 2014).
Nelson, J. S. Fishes of the World 4th edn (John Wiley, 2006).
Near, T. J. et al. Resolution of ray-finned fish phylogeny and timing of diversification. Proc. Natl Acad. Sci. USA 109, 13698–13703 (2012).
pubmed: 22869754 pmcid: 3427055 doi: 10.1073/pnas.1206625109
Betancur, R. R. et al. The tree of life and a new classification of bony fishes. PLoS Curr. 5, ecurrents.tol.53ba26640df0ccaee75bb165c8c26288 (2013).
Faircloth, B. C., Sorenson, L., Santini, F. & Alfaro, M. E. A phylogenomic perspective on the radiation of ray-finned fishes based upon targeted sequencing of ultraconserved elements (UCEs). PLoS ONE 8, e65923 (2013).
pubmed: 23824177 pmcid: 3688804 doi: 10.1371/journal.pone.0065923
Braasch, I. et al. The spotted gar genome illuminates vertebrate evolution and facilitates human–teleost comparisons. Nat. Genet. 48, 427–437 (2016).
pubmed: 26950095 pmcid: 4817229 doi: 10.1038/ng.3526
Hughes, L. C. et al. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proc. Natl Acad. Sci. USA 115, 6249–6254 (2018).
pubmed: 29760103 pmcid: 6004478 doi: 10.1073/pnas.1719358115
Clarke, J. T., Lloyd, G. T. & Friedman, M. Little evidence for enhanced phenotypic evolution in early teleosts relative to their living fossil sister group. Proc. Natl Acad. Sci. USA 113, 11531–11536 (2016).
pubmed: 27671652 pmcid: 5068283 doi: 10.1073/pnas.1607237113
Braasch, I. et al. A new model army: emerging fish models to study the genomics of vertebrate Evo-Devo. J. Exp. Zool. B Mol. Dev. Evol. 324, 316–341 (2015).
pubmed: 25111899 doi: 10.1002/jez.b.22589
Du, K. et al. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nat. Ecol. Evol. 4, 841–852 (2020).
pubmed: 32231327 pmcid: 7269910 doi: 10.1038/s41559-020-1166-x
Bi, X. et al. Tracing the genetic footprints of vertebrate landing in non-teleost ray-finned fishes. Cell 184, 1377–1391 (2021).
pubmed: 33545088 doi: 10.1016/j.cell.2021.01.046
Cheng, P. et al. The American paddlefish genome provides novel insights into chromosomal evolution and bone mineralization in early vertebrates. Mol. Biol. Evol. 38, 1595–1607 (2020).
pmcid: 8042750 doi: 10.1093/molbev/msaa326
Braasch, I. & Postlethwait, J. H. in Polyploidy and Genome Evolution (eds Soltis, P. S. & Soltis, D. E.) Ch. 17, 341–383 (Springer, 2012).
Ravi, V. & Venkatesh, B. The divergent genomes of teleosts. Annu. Rev. Anim. Biosci. 6, 47–68 (2018).
pubmed: 29447475 doi: 10.1146/annurev-animal-030117-014821
Takezaki, N. Global rate variation in bony vertebrates. Genome Biol. Evol. 10, 1803–1815 (2018).
pubmed: 29931060 pmcid: 6055543 doi: 10.1093/gbe/evy125
Patterson, C. in Interrelationships of Fishes Vol. Supplement 1 (eds Greenwood, P. H., Miles, R. S. & Patterson, C.) 233–305 (Academic Press, 1973).
Grande, L. An Empirical Synthetic Pattern Study of Gars (Lepisosteiformes) and Closely Related Species, Based Mostly on Skeletal Anatomy. The Resurrection of Holostei 1–863 (American Society of Ichthyologists and Herpetologists, 2010).
Sallan, L. C. Major issues in the origins of ray-finned fish (Actinopterygii) biodiversity. Biol. Rev. Camb. Philos. Soc. 89, 950–971 (2014).
pubmed: 24612207 doi: 10.1111/brv.12086
Grande, L. & Bemis, W. E. A comprehensive phylogenetic study of amiid fishes (Amiidae) based on comparative skeletal anatomy. An empirical search for interconnected patterns of natural history. J. Vertebr. Paleontol. 18, 1–696 (1998).
doi: 10.1080/02724634.1998.10011114
Majtanova, Z., Symonova, R., Arias-Rodriguez, L., Sallan, L. & Rab, P. “Holostei versus Halecostomi” problem: insight from cytogenetics of ancient nonteleost actinopterygian fish, bowfin Amia calva. J. Exp. Zool. B Mol. Dev. Evol. 328, 620–628 (2017).
pubmed: 28074622 doi: 10.1002/jez.b.22720
Litman, G. W., Frommel, D., Finstad, J. & Good, R. A. The evolution of the immune reponse. IX. Immunoglobulins of the bowfin: purification and characterization. J. Immunol. 106, 747–754 (1971).
pubmed: 4100690 doi: 10.4049/jimmunol.106.3.747
Sire, J. Y., Donoghue, P. C. & Vickaryous, M. K. Origin and evolution of the integumentary skeleton in non-tetrapod vertebrates. J. Anat. 214, 409–440 (2009).
pubmed: 19422423 pmcid: 2736117 doi: 10.1111/j.1469-7580.2009.01046.x
Funk, E., Lencer, E. & McCune, A. Dorsoventral inversion of the air-filled organ (lungs, gas bladder) in vertebrates: RNAsequencing of laser capture microdissected embryonic tissue. J. Exp. Zool. B Mol. Dev. Evol. 334, 325–338 (2020).
pubmed: 32864827 pmcid: 8094346 doi: 10.1002/jez.b.22998
Funk, E. C., Breen, C., Sanketi, B. D., Kurpios, N. & McCune, A. Changes in Nkx2.1, Sox2, Bmp4 and Bmp16 expression underlying the lung-to-gas bladder evolutionary transition in ray-finned fishes. Evol. Dev. 22, 384–402 (2020).
pubmed: 33463017 pmcid: 8013215 doi: 10.1111/ede.12354
Chapman, J. A. et al. Meraculous: de novo genome assembly with short paired-end reads. PLoS ONE 6, e23501 (2011).
pubmed: 21876754 pmcid: 3158087 doi: 10.1371/journal.pone.0023501
Putnam, N. H. et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 26, 342–350 (2016).
pubmed: 26848124 pmcid: 4772016 doi: 10.1101/gr.193474.115
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).
pubmed: 19815776 pmcid: 2858594 doi: 10.1126/science.1181369
Ohno, S. et al. Microchromosomes in holocephalian, chondrostean and holostean fishes. Chromosoma 26, 35–40 (1969).
pubmed: 5799423 doi: 10.1007/BF00319498
Pasquier, J. et al. Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database. BMC Genomics 17, 368 (2016).
pubmed: 27189481 pmcid: 4870732 doi: 10.1186/s12864-016-2709-z
Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 12, 491 (2011).
pubmed: 22192575 pmcid: 3280279 doi: 10.1186/1471-2105-12-491
Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).
pubmed: 31727128 pmcid: 6857279 doi: 10.1186/s13059-019-1832-y
Feron, R. et al. RADSex: a computational workflow to study sex determination using restriction site-associated DNA sequencing data. Mol. Ecol. Resour. 21, 1715–1731 (2021).
pubmed: 33590960 doi: 10.1111/1755-0998.13360
Sacerdot, C., Louis, A., Bon, C., Berthelot, C. & Roest Crollius, H. Chromosome evolution at the origin of the ancestral vertebrate genome. Genome Biol. 19, 166 (2018).
pubmed: 30333059 pmcid: 6193309 doi: 10.1186/s13059-018-1559-1
Simakov, O. et al. Deeply conserved synteny resolves early events in vertebrate evolution. Nat. Ecol. Evol. 4, 820–830 (2020).
pubmed: 32313176 pmcid: 7269912 doi: 10.1038/s41559-020-1156-z
Moret, B. M. E., Tang, J., Wang, L.-S. & Warnow, T. Steps toward accurate reconstructions of phylogenies from gene-order data. J. Comput. Syst. Sci. 65, 508–525 (2002).
doi: 10.1016/S0022-0000(02)00007-7
Lin, Y., Hu, F., Tang, J. & Moret, B. M. Maximum likelihood phylogenetic reconstruction from high-resolution whole-genome data and a tree of 68 eukaryotes. Pac. Symp. Biocomput. 2013, 285–296 (2013).
Emms, D. M. & Kelly, S. STAG: species tree inference from all genes. Preprint at bioRxiv https://doi.org/10.1101/267914 (2018).
Wcisel, D. J., Ota, T., Litman, G. W. & Yoder, J. A. Spotted gar and the evolution of innate immune receptors. J. Exp. Zool. B Mol. Dev. Evol. 328, 666–684 (2017).
pubmed: 28544607 pmcid: 6876127 doi: 10.1002/jez.b.22738
Trowsdale, J. The MHC, disease and selection. Immunol. Lett. 137, 1–8 (2011).
pubmed: 21262263 doi: 10.1016/j.imlet.2011.01.002
Ohta, Y. et al. Primitive synteny of vertebrate major histocompatibility complex class I and class II genes. Proc. Natl Acad. Sci. USA 97, 4712–4717 (2000).
pubmed: 10781076 pmcid: 18298 doi: 10.1073/pnas.97.9.4712
Grimholt, U. MHC and evolution in teleosts. Biology 5, 6 (2016).
pmcid: 4810163 doi: 10.3390/biology5010006
Flajnik, M. F. A cold-blooded view of adaptive immunity. Nat. Rev. Immunol. 18, 438–453 (2018).
pubmed: 29556016 pmcid: 6084782 doi: 10.1038/s41577-018-0003-9
Fillatreau, S. et al. The astonishing diversity of Ig classes and B cell repertoires in teleost fish. Front. Immunol. 4, 28 (2013).
pubmed: 23408183 pmcid: 3570791 doi: 10.3389/fimmu.2013.00028
Mirete-Bachiller, S., Olivieri, D. N. & Gambon-Deza, F. Immunoglobulin T genes in Actinopterygii. Fish Shellfish Immunol. 108, 86–93 (2021).
pubmed: 33279606 doi: 10.1016/j.fsi.2020.11.027
Aderem, A. & Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000).
pubmed: 10963608 doi: 10.1038/35021228
Fitzgerald, K. A. & Kagan, J. C. Toll-like receptors and the control of immunity. Cell 180, 1044–1066 (2020).
pubmed: 32164908 doi: 10.1016/j.cell.2020.02.041
Aoki, T., Hikima, J., Hwang, S. D. & Jung, T. S. Innate immunity of finfish: primordial conservation and function of viral RNA sensors in teleosts. Fish Shellfish Immunol. 35, 1689–1702 (2013).
pubmed: 23462146 doi: 10.1016/j.fsi.2013.02.005
Kawasaki, K. et al. SCPP genes and their relatives in gar: rapid expansion of mineralization genes in Osteichthyans. J. Exp. Zool. B Mol. Dev. Evol. 328, 645–665 (2017).
pubmed: 28643450 doi: 10.1002/jez.b.22755
Qu, Q., Haitina, T., Zhu, M. & Ahlberg, P. E. New genomic and fossil data illuminate the origin of enamel. Nature 526, 108–111 (2015).
pubmed: 26416752 doi: 10.1038/nature15259
Kawasaki, K. et al. Coevolution of enamel, ganoin, enameloid, and their matrix SCPP genes in osteichthyans. iScience 24, 102023 (2021).
pubmed: 33506188 pmcid: 7814152 doi: 10.1016/j.isci.2020.102023
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).
pubmed: 24097267 pmcid: 3959825 doi: 10.1038/nmeth.2688
Ballard, W. W. Stages and rates of normal development in the holostean fish, Amia calva. J. Exp. Zool. 238, 337–354 (1986).
doi: 10.1002/jez.1402380308
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
pubmed: 20513432 pmcid: 2898526 doi: 10.1016/j.molcel.2010.05.004
Armstrong, J. et al. Progressive Cactus is a multiple-genome aligner for the thousand-genome era. Nature 587, 246–251 (2020).
pubmed: 33177663 pmcid: 7673649 doi: 10.1038/s41586-020-2871-y
Visel, A., Minovitsky, S., Dubchak, I. & Pennacchio, L. A. VISTA Enhancer Browser—a database of tissue-specific human enhancers. Nucleic Acids Res. 35, D88–D92 (2007).
pubmed: 17130149 doi: 10.1093/nar/gkl822
Yuan, X. et al. Heart enhancers with deeply conserved regulatory activity are established early in zebrafish development. Nat. Commun. 9, 4977 (2018).
pubmed: 30478328 pmcid: 6255839 doi: 10.1038/s41467-018-07451-z
Abbasi, A. A. et al. Human intronic enhancers control distinct sub-domains of Gli3 expression during mouse CNS and limb development. BMC Dev. Biol. 10, 44 (2010).
pubmed: 20426846 pmcid: 2875213 doi: 10.1186/1471-213X-10-44
Adachi, N., Robinson, M., Goolsbee, A. & Shubin, N. H. Regulatory evolution of Tbx5 and the origin of paired appendages. Proc. Natl Acad. Sci. USA 113, 10115–10120 (2016).
pubmed: 27503876 pmcid: 5018757 doi: 10.1073/pnas.1609997113
Menke, D. B., Guenther, C. & Kingsley, D. M. Dual hindlimb control elements in the Tbx4 gene and region-specific control of bone size in vertebrate limbs. Development 135, 2543–2553 (2008).
pubmed: 18579682 doi: 10.1242/dev.017384
Zhang, W. et al. Spatial–temporal targeting of lung-specific mesenchyme by a Tbx4 enhancer. BMC Biol. 11, 111 (2013).
pubmed: 24225400 pmcid: 3907025 doi: 10.1186/1741-7007-11-111
Vernimmen, D. Uncovering enhancer functions using the α-globin locus. PLoS Genet. 10, e1004668 (2014).
pubmed: 25330308 pmcid: 4199490 doi: 10.1371/journal.pgen.1004668
Huang, P. et al. Comparative analysis of three-dimensional chromosomal architecture identifies a novel fetal hemoglobin regulatory element. Genes Dev. 31, 1704–1713 (2017).
pubmed: 28916711 pmcid: 5647940 doi: 10.1101/gad.303461.117
Ulianov, S. V. et al. Activation of the α-globin gene expression correlates with dramatic upregulation of nearby non-globin genes and changes in local and large-scale chromatin spatial structure. Epigenetics Chromatin 10, 35 (2017).
pubmed: 28693562 pmcid: 5504709 doi: 10.1186/s13072-017-0142-4
Pijuan-Sala, B. et al. Single-cell chromatin accessibility maps reveal regulatory programs driving early mouse organogenesis. Nat. Cell Biol. 22, 487–497 (2020).
pubmed: 32231307 pmcid: 7145456 doi: 10.1038/s41556-020-0489-9
Tena, J. J. et al. Comparative epigenomics in distantly related teleost species identifies conserved cis-regulatory nodes active during the vertebrate phylotypic period. Genome Res. 24, 1075–1085 (2014).
pubmed: 24709821 pmcid: 4079964 doi: 10.1101/gr.163915.113
Li, Y. et al. Dynamic transcriptional and chromatin accessibility landscape of medaka embryogenesis. Genome Res. 30, 924–937 (2020).
pubmed: 32591361 pmcid: 7370878 doi: 10.1101/gr.258871.119
Graham, J. B. Air-Breathing Fishes (Academic Press, 1997).
Meyer, A. et al. Giant lungfish genome elucidates the conquest of land by vertebrates. Nature 590, 284–289 (2021).
pubmed: 33461212 pmcid: 7875771 doi: 10.1038/s41586-021-03198-8
Wang, K. et al. African lungfish genome sheds light on the vertebrate water-to-land transition. Cell 184, 1362–1376 (2021).
pubmed: 33545087 doi: 10.1016/j.cell.2021.01.047
Kuraku, S. et al. Noncanonical role of Hox14 revealed by its expression patterns in lamprey and shark. Proc. Natl Acad. Sci. USA 105, 6679–6683 (2008).
pubmed: 18448683 pmcid: 2373320 doi: 10.1073/pnas.0710947105
Powers, T. P. & Amemiya, C. T. Evidence for a Hox14 paralog group in vertebrates. Curr. Biol. 14, R183–R184 (2004).
pubmed: 15028231 doi: 10.1016/j.cub.2004.02.015
Tulenko, F. J. et al. HoxD expression in the fin-fold compartment of basal gnathostomes and implications for paired appendage evolution. Sci. Rep. 6, 22720 (2016).
pubmed: 26940624 pmcid: 4778128 doi: 10.1038/srep22720
Zhang, J. et al. Loss of fish actinotrichia proteins and the fin-to-limb transition. Nature 466, 234–237 (2010).
pubmed: 20574421 doi: 10.1038/nature09137
Duran, I. et al. Collagen duplicate genes of bone and cartilage participate during regeneration of zebrafish fin skeleton. Gene Expr. Patterns 19, 60–69 (2015).
pubmed: 26256560 doi: 10.1016/j.gep.2015.07.004
Wade, C., Brinas, I., Welfare, M., Wicking, C. & Farlie, P. G. Twist2 contributes to termination of limb bud outgrowth and patterning through direct regulation of Grem1. Dev. Biol. 370, 145–153 (2012).
pubmed: 22884497 doi: 10.1016/j.ydbio.2012.07.025
Yashiro, K. et al. Regulation of retinoic acid distribution is required for proximodistal patterning and outgrowth of the developing mouse limb. Dev. Cell 6, 411–422 (2004).
pubmed: 15030763 doi: 10.1016/S1534-5807(04)00062-0
Kawakami, Y. et al. Sp8 and Sp9, two closely related buttonhead-like transcription factors, regulate Fgf8 expression and limb outgrowth in vertebrate embryos. Development 131, 4763–4774 (2004).
pubmed: 15358670 doi: 10.1242/dev.01331
Gillis, J. A., Dahn, R. D. & Shubin, N. H. Shared developmental mechanisms pattern the vertebrate gill arch and paired fin skeletons. Proc. Natl Acad. Sci. USA 106, 5720–5724 (2009).
pubmed: 19321424 pmcid: 2667079 doi: 10.1073/pnas.0810959106
Tulenko, F. J. et al. Fin-fold development in paddlefish and catshark and implications for the evolution of the autopod. Proc. Biol. Sci. 284, 20162780 (2017).
pubmed: 28539509 pmcid: 5454254
Hodgkinson, V. S., Ericsson, R., Johanson, Z. & Joss, J. M. P. The apical ectodermal ridge in the pectoral fin of the Australian lungfish (Neoceratodus forsteri): keeping the fin to limb transition in the fold. Acta Zool. 90, 253–263 (2009).
doi: 10.1111/j.1463-6395.2008.00349.x
Gehrke, A. R. & Shubin, N. H. Cis-regulatory programs in the development and evolution of vertebrate paired appendages. Semin. Cell Dev. Biol. 57, 31–39 (2016).
pubmed: 26783722 pmcid: 5360378 doi: 10.1016/j.semcdb.2016.01.015
Doroba, C. K. & Sears, K. E. The divergent development of the apical ectodermal ridge in the marsupial Monodelphis domestica. Anat. Rec. 293, 1325–1332 (2010).
doi: 10.1002/ar.21183
Purushothaman, S., Elewa, A. & Seifert, A. W. Fgf-signaling is compartmentalized within the mesenchyme and controls proliferation during salamander limb development. eLife 8, e48507 (2019).
pubmed: 31538936 pmcid: 6754229 doi: 10.7554/eLife.48507
Negrisolo, E. et al. Different phylogenomic approaches to resolve the evolutionary relationships among model fish species. Mol. Biol. Evol. 27, 2757–2774 (2010).
pubmed: 20591844 doi: 10.1093/molbev/msq165
Nikaido, M. et al. Coelacanth genomes reveal signatures for evolutionary transition from water to land. Genome Res. 23, 1740–1748 (2013).
pubmed: 23878157 pmcid: 3787270 doi: 10.1101/gr.158105.113
Frazer, K. A., Pachter, L., Poliakov, A., Rubin, E. M. & Dubchak, I. VISTA: computational tools for comparative genomics. Nucleic Acids Res. 32, W273–W279 (2004).
pubmed: 15215394 pmcid: 441596 doi: 10.1093/nar/gkh458
Brudno, M. et al. Glocal alignment: finding rearrangements during alignment. Bioinformatics 19, i54–i62 (2003).
pubmed: 12855437 doi: 10.1093/bioinformatics/btg1005
Braasch, I. et al. Connectivity of vertebrate genomes: paired-related homeobox (Prrx) genes in spotted gar, basal teleosts, and tetrapods. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 163, 24–36 (2014).
pubmed: 24486528 pmcid: 4032612 doi: 10.1016/j.cbpc.2014.01.005
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168 pmcid: 2705234 doi: 10.1093/bioinformatics/btp324
Ramirez, F. et al. High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nat. Commun. 9, 189 (2018).
pubmed: 29335486 pmcid: 5768762 doi: 10.1038/s41467-017-02525-w
Lopez-Delisle, L. et al. pyGenomeTracks: reproducible plots for multivariate genomic data sets. Bioinformatics 37, 422–423 (2020).
pmcid: 8058774 doi: 10.1093/bioinformatics/btaa692
Smit, A. F. A. & Hubley, R. RepeatModeler Open-1.0 http://www.repeatmasker.org (Institute for Systems Biology) (2008).
Jurka, J. Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 16, 418–420 (2000).
pubmed: 10973072 doi: 10.1016/S0168-9525(00)02093-X
Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0 http://www.repeatmasker.org (Institute for Systems Biology) (2013).
Smith, C. D. et al. Improved repeat identification and masking in Dipterans. Gene 389, 1–9 (2007).
pubmed: 17137733 doi: 10.1016/j.gene.2006.09.011
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
pubmed: 2231712 doi: 10.1016/S0022-2836(05)80360-2
Slater, G. S. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6, 31 (2005).
pubmed: 15713233 pmcid: 553969 doi: 10.1186/1471-2105-6-31
Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004).
pubmed: 15144565 pmcid: 421630 doi: 10.1186/1471-2105-5-59
Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19, ii215–ii225 (2003).
pubmed: 14534192 doi: 10.1093/bioinformatics/btg1080
Bowman, M. J., Pulman, J. A., Liu, T. L. & Childs, K. L. A modified GC-specific MAKER gene annotation method reveals improved and novel gene predictions of high and low GC content in Oryza sativa. BMC Bioinformatics 18, 522 (2017).
pubmed: 29178822 pmcid: 5702205 doi: 10.1186/s12859-017-1942-z
Bateman, A. et al. The Pfam Protein Families Database http://www.sanger.ac.uk/Software/Pfam/ (2000).
Eddy, S. R. Multiple alignment using hidden Markov models. Proc. Int. Conf. Intell. Syst. Mol. Biol. 3, 114–120 (1995).
pubmed: 7584426
Campbell, M. S., Holt, C., Moore, B. & Yandell, M. Genome annotation and curation using MAKER and MAKER-P. Curr. Protoc. Bioinformatics 48, 4.11.1–4.11.39 (2014).
doi: 10.1002/0471250953.bi0411s48
Vilella, A. J. et al. EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 19, 327–335 (2009).
pubmed: 19029536 pmcid: 2652215 doi: 10.1101/gr.073585.107
Ruan, J. et al. TreeFam: 2008 update. Nucleic Acids Res. 36, D735–D740 (2008).
pubmed: 18056084 doi: 10.1093/nar/gkm1005
Wallace, I. M., O’Sullivan, O., Higgins, D. G. & Notredame, C. M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res. 34, 1692–1699 (2006).
pubmed: 16556910 pmcid: 1410914 doi: 10.1093/nar/gkl091
Sankoff, D., Deneault, M., Bryant, D., Lemieux, C. & Turmel, M. in Comparative Genomics. Computational Biology Vol. 1 (eds Sankoff, D. & Nadeau, J. H.) (Springer, 2000).
Sawa, G., Dicks, J. & Roberts, I. N. Current approaches to whole genome phylogenetic analysis. Brief. Bioinform. 4, 63–74 (2003).
pubmed: 12715835 doi: 10.1093/bib/4.1.63
Farris, J. S. Phylogenetic analysis under Dollo’s law. Syst. Biol. 26, 77–88 (1977).
doi: 10.1093/sysbio/26.1.77
Felsenstein, J. PHYLIP—phylogeny inference package (ver. 3.2). Cladistics 5, 164–166 (1989).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).
pubmed: 22517427 doi: 10.1093/bib/bbs017
Ramírez, F., Dündar, F., Diehl, S., Grüning, B. A. & Manke, T. DeepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).
pubmed: 24799436 pmcid: 4086134 doi: 10.1093/nar/gku365
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
pubmed: 21572440 pmcid: 3571712 doi: 10.1038/nbt.1883
Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).
pubmed: 23071270 doi: 10.1093/bioinformatics/bts611
Fernandez-Minan, A., Bessa, J., Tena, J. J. & Gomez-Skarmeta, J. L. Assay for transposase-accessible chromatin and circularized chromosome conformation capture, two methods to explore the regulatory landscapes of genes in zebrafish. Methods Cell Biol. 135, 413–430 (2016).
pubmed: 27443938 doi: 10.1016/bs.mcb.2016.02.008
Gaspar, J. M. Improved peak-calling with MACS2. Preprint at bioRxiv https://doi.org/10.1101/496521 (2018).
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Babicki, S. et al. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 44, W147–W153 (2016).
pubmed: 27190236 pmcid: 4987948 doi: 10.1093/nar/gkw419
Wickham, H. ggplot2: Elegant Graphics for Data Analysis 2nd edn (Springer Verlag, 2016).
Lufkin, T. In situ hybridization of whole-mount mouse embryos with RNA probes: preparation of embryos and probes. CSH Protoc. 2007, pdb.prot4822 (2007).
pubmed: 21356975
Lufkin, T. In situ hybridization of whole-mount mouse embryos with RNA probes: hybridization, washes, and histochemistry. CSH Protoc. 2007, pdb.prot4823 (2007).
pubmed: 21356976
Tatsumi, N. et al. Molecular developmental mechanism in polypterid fish provides insight into the origin of vertebrate lungs. Sci. Rep. 6, 30580 (2016).
pubmed: 27466206 pmcid: 4964569 doi: 10.1038/srep30580
Hara, Y. et al. Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nat. Ecol. Evol. 2, 1761–1771 (2018).
pubmed: 30297745 doi: 10.1038/s41559-018-0673-5
Komisarczuk, A. Z., Kawakami, K. & Becker, T. S. Cis-regulation and chromosomal rearrangement of the fgf8 locus after the teleost/tetrapod split. Dev. Biol. 336, 301–312 (2009).
pubmed: 19782672 doi: 10.1016/j.ydbio.2009.09.029
Marinic, M., Aktas, T., Ruf, S. & Spitz, F. An integrated holo-enhancer unit defines tissue and gene specificity of the Fgf8 regulatory landscape. Dev. Cell 24, 530–542 (2013).
pubmed: 23453598 doi: 10.1016/j.devcel.2013.01.025
Hornblad, A., Bastide, S., Langenfeld, K., Langa, F. & Spitz, F. Dissection of the Fgf8 regulatory landscape by in vivo CRISPR-editing reveals extensive intra- and inter-enhancer redundancy. Nat. Commun. 12, 439 (2021).
pubmed: 33469032 pmcid: 7815712 doi: 10.1038/s41467-020-20714-y

Auteurs

Andrew W Thompson (AW)

Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.
Ecology, Evolution & Behavior Program, Michigan State University, East Lansing, MI, USA.

M Brent Hawkins (MB)

Department of Genetics, Harvard Medical School, Boston, MA, USA.
Department of Orthopedic Research, Boston Children's Hospital, Boston, MA, USA.
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA.

Elise Parey (E)

Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.

Dustin J Wcisel (DJ)

Department of Molecular Biomedical Sciences, NC State University, Raleigh, NC, USA.

Tatsuya Ota (T)

Department of Evolutionary Studies of Biosystems, SOKENDAI (the Graduate University for Advanced Studies), Hayama, Japan.

Kazuhiko Kawasaki (K)

Department of Anthropology, Pennsylvania State University, University Park, PA, USA.

Emily Funk (E)

Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.
Animal Science Department, University of California Davis, Davis, CA, USA.

Mauricio Losilla (M)

Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.
Ecology, Evolution & Behavior Program, Michigan State University, East Lansing, MI, USA.

Olivia E Fitch (OE)

Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.
Ecology, Evolution & Behavior Program, Michigan State University, East Lansing, MI, USA.

Qiaowei Pan (Q)

Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.

Romain Feron (R)

Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Alexandra Louis (A)

Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.

Jérôme Montfort (J)

INRAE, LPGP, Rennes, France.

Marine Milhes (M)

GeT-PlaGe, INRAE, Genotoul, Castanet-Tolosan, France.

Brett L Racicot (BL)

Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.

Kevin L Childs (KL)

Department of Plant Biology, Michigan State University, East Lansing, MI, USA.

Quenton Fontenot (Q)

Department of Biological Sciences, Nicholls State University, Thibodaux, LA, USA.

Allyse Ferrara (A)

Department of Biological Sciences, Nicholls State University, Thibodaux, LA, USA.

Solomon R David (SR)

Department of Biological Sciences, Nicholls State University, Thibodaux, LA, USA.

Amy R McCune (AR)

Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.

Alex Dornburg (A)

Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA.

Jeffrey A Yoder (JA)

Department of Molecular Biomedical Sciences, NC State University, Raleigh, NC, USA.
Comparative Medicine Institute, NC State University, Raleigh, NC, USA.
Center for Human Health and the Environment, NC State University, Raleigh, NC, USA.

Yann Guiguen (Y)

INRAE, LPGP, Rennes, France.

Hugues Roest Crollius (H)

Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.

Camille Berthelot (C)

Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.

Matthew P Harris (MP)

Department of Genetics, Harvard Medical School, Boston, MA, USA.
Department of Orthopedic Research, Boston Children's Hospital, Boston, MA, USA.

Ingo Braasch (I)

Department of Integrative Biology, Michigan State University, East Lansing, MI, USA. braasch@msu.edu.
Ecology, Evolution & Behavior Program, Michigan State University, East Lansing, MI, USA. braasch@msu.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH