KRAS phosphorylation regulates cell polarization and tumorigenic properties in colorectal cancer.
Animals
Cell Line, Tumor
Cell Polarity
Cell Proliferation
Colorectal Neoplasms
/ genetics
Gene Expression Regulation, Neoplastic
HCT116 Cells
Humans
MAP Kinase Signaling System
Mice
Mutation
Neoplasm Transplantation
Nerve Tissue Proteins
/ genetics
Phosphorylation
Plasminogen Activator Inhibitor 1
/ genetics
Proto-Oncogene Proteins p21(ras)
/ genetics
Receptors, Cell Surface
/ genetics
Trypsin
/ genetics
Trypsinogen
/ genetics
Journal
Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
received:
26
05
2020
accepted:
19
07
2021
revised:
07
06
2021
pubmed:
2
8
2021
medline:
31
12
2021
entrez:
1
8
2021
Statut:
ppublish
Résumé
Oncogenic mutations of KRAS are found in the most aggressive human tumors, including colorectal cancer. It has been suggested that oncogenic KRAS phosphorylation at Ser181 modulates its activity and favors cell transformation. Using nonphosphorylatable (S181A), phosphomimetic (S181D), and phospho-/dephosphorylatable (S181) oncogenic KRAS mutants, we analyzed the role of this phosphorylation to the maintenance of tumorigenic properties of colorectal cancer cells. Our data show that the presence of phospho-/dephosphorylatable oncogenic KRAS is required for preserving the epithelial organization of colorectal cancer cells in 3D cultures, and for supporting subcutaneous tumor growth in mice. Interestingly, gene expression differed according to the phosphorylation status of KRAS. In DLD-1 cells, CTNNA1 was only expressed in phospho-/dephosphorylatable oncogenic KRAS-expressing cells, correlating with cell polarization. Moreover, lack of oncogenic KRAS phosphorylation leads to changes in expression of genes related to cell invasion, such as SERPINE1, PRSS1,2,3, and NEO1, and expression of phosphomimetic oncogenic KRAS resulted in diminished expression of genes involved in enterocyte differentiation, such as HNF4G. Finally, the analysis, in a public data set of human colorectal cancer, of the gene expression signatures associated with phosphomimetic and nonphosphorylatable oncogenic KRAS suggests that this post-translational modification regulates tumor progression in patients.
Identifiants
pubmed: 34333552
doi: 10.1038/s41388-021-01967-3
pii: 10.1038/s41388-021-01967-3
doi:
Substances chimiques
KRAS protein, human
0
NEO1 protein, human
0
Nerve Tissue Proteins
0
Plasminogen Activator Inhibitor 1
0
Receptors, Cell Surface
0
SERPINE1 protein, human
0
PRSS2 protein, human
103964-84-7
Trypsinogen
9002-08-8
PRSS1 protein, human
EC 3.4.21.4
PRSS3 protein, human
EC 3.4.21.4
Trypsin
EC 3.4.21.4
Proto-Oncogene Proteins p21(ras)
EC 3.6.5.2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5730-5740Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3:459–65.
pubmed: 12778136
doi: 10.1038/nrc1097
Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature. 1991;349:117–27.
pubmed: 1898771
doi: 10.1038/349117a0
Hancock JF, Magee AI, Childs JE, Marshall CJ. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell. 1989;57:1167–77.
pubmed: 2661017
doi: 10.1016/0092-8674(89)90054-8
Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell. 2017;170:17–33.
pubmed: 28666118
pmcid: 5555610
doi: 10.1016/j.cell.2017.06.009
Chandra A, Grecco HE, Pisupati V, Perera D, Cassidy L, Skoulidis F, et al. The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of Ras family proteins. Nat Cell Biol. 2012;14:148–58.
doi: 10.1038/ncb2394
Alvarez-Moya B, López-Alcalá C, Drosten M, Bachs O, Agell N. K-Ras4B phosphorylation at Ser181 is inhibited by calmodulin and modulates K-Ras activity and function. Oncogene. 2010;29:5911–22.
pubmed: 20802526
doi: 10.1038/onc.2010.298
Stephen AG, Esposito D, Bagni RG, McCormick F. Dragging ras back in the ring. Cancer Cell. 2014;25:272–81.
pubmed: 24651010
doi: 10.1016/j.ccr.2014.02.017
Shalom-Feuerstein R, Plowman SJ, Rotblat B, Ariotti N, Tian T, Hancock JF, et al. K-ras nanoclustering is subverted by overexpression of the scaffold protein galectin-3. Cancer Res. 2008;68:6608–16.
pubmed: 18701484
pmcid: 2587079
doi: 10.1158/0008-5472.CAN-08-1117
Lopez-Alcalá C, Alvarez-Moya B, Villalonga P, Calvo M, Bachs O, Agell N. Identification of essential interacting elements in K-Ras/calmodulin binding and its role in K-Ras localization. J Biol Chem. 2008;283:10621–31.
pubmed: 18182391
doi: 10.1074/jbc.M706238200
Garrido E, Lázaro J, Jaumot M, Agell N, Rubio-Martinez J. Modeling and subtleties of K-Ras and calmodulin interaction. PLoS Comput Biol. 2018;14:1–19.
doi: 10.1371/journal.pcbi.1006552
Villalonga P, López-Alcalá C, Bosch M, Chiloeches A, Rocamora N, Gil J, et al. Calmodulin binds to K-Ras, but not to H- or N-Ras, and modulates its downstream signaling. Mol Cell Biol. 2001;21:7345–54.
pubmed: 11585916
pmcid: 99908
doi: 10.1128/MCB.21.21.7345-7354.2001
Barceló C, Etchin J, Mansour MR, Sanda T, Ginesta MM, Sanchez-Arévalo Lobo VJ. et al. Ribonucleoprotein HNRNPA2B1 interacts with and regulates oncogenic KRAS in pancreatic ductal adenocarcinoma cells. Gastroenterology. 2014;147:882–92.
pubmed: 24998203
doi: 10.1053/j.gastro.2014.06.041
Inder KL, Lau C, Loo D, Chaudhary N, Goodall A, Martin S, et al. Nucleophosmin and nucleolin regulate K-Ras plasma membrane interactions and MAPK signal transduction. J Biol Chem. 2009;284:28410–9.
pubmed: 19661056
pmcid: 2788890
doi: 10.1074/jbc.M109.001537
Lee S, Jeong W, Cho Y, Cha P, Yoon J, Ro EJ, et al. β‐Catenin‐RAS interaction serves as a molecular switch for RAS degradation via GSK3β. EMBO Rep. 2018;19:e46060.
Villalonga P, López-Alcalá C, Chiloeches A, Gil J, Marais R, Bachs O, et al. Calmodulin prevents activation of Ras by PKC in 3T3 fibroblasts. J Biol Chem. 2002;277:37929–35.
pubmed: 12151388
doi: 10.1074/jbc.M202245200
Barceló C, Paco N, Beckett AJ, Alvarez-Moya B, Garrido E, Gelabert M, et al. Oncogenic K-ras segregates at spatially distinct plasma membrane signaling platforms according to its phosphorylation status. J Cell Sci. 2013;126:4553–9.
pubmed: 23943869
Yang MH, Nickerson S, Kim ET, Liot C, Laurent G, Spang R, et al. Regulation of RAS oncogenicity by acetylation. Proc Natl Acad Sci USA. 2012;109:10843–8.
pubmed: 22711838
pmcid: 3390846
doi: 10.1073/pnas.1201487109
Barcelo C, Paco N, Morell M, Alvarez-Moya B, Bota-Rabassedas N, Jaumot M, et al. Phosphorylation at Ser-181 of oncogenic KRAS is required for tumor growth. Cancer Res. 2014;74:1190–9.
pubmed: 24371225
doi: 10.1158/0008-5472.CAN-13-1750
Wang MT, Holderfield M, Galeas J, Delrosario R, To MD, Balmain A, et al. K-Ras promotes tumorigenicity through suppression of non-canonical Wnt signaling. Cell. 2015;163:1237–51.
pubmed: 26590425
doi: 10.1016/j.cell.2015.10.041
Bivona TG, Quatela SE, Bodemann BO, Ahearn IM, Soskis MJ, Mor A, et al. PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol Cell. 2006;21:481–93.
pubmed: 16483930
doi: 10.1016/j.molcel.2006.01.012
Sasaki AT, Carracedo A, Locasale JW, Anastasiou D, Takeuchi K, Kahoud ER, et al. Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors. Sci Signal. 2011;4:ra13.
pubmed: 21386094
pmcid: 3437993
doi: 10.1126/scisignal.2001518
Vartanian S, Bentley C, Brauer MJ, Li L, Shirasawa S, Sasazuki T, et al. Identification of mutant K-Ras-dependent phenotypes using a panel of isogenic cell lines. J Biol Chem. 2013;288:2403–13.
pubmed: 23188824
doi: 10.1074/jbc.M112.394130
Shirasawa S, Furuse M, Yokoyama N, Sasazuki T. Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science. (80-). 1993;260:85. LP – 88
doi: 10.1126/science.8465203
Brookes MJ, Hughes S, Turner FE, Reynolds G, Sharma N, Ismail T, et al. Modulation of iron transport proteins in human colorectal carcinogenesis. Gut. 2006;55:1449–60.
pubmed: 16641131
pmcid: 1856421
doi: 10.1136/gut.2006.094060
Hu DG, Mackenzie PI, McKinnon RA, Meech R. Genetic polymorphisms of human UDP-glucuronosyltransferase (UGT) genes and cancer risk. Drug Metab Rev. 2016;48:47–69.
pubmed: 26828111
doi: 10.3109/03602532.2015.1131292
Maher DM, Gupta BK, Nagata S, Jaggi M, Chauhan SC. Mucin 13: Structure, function, and potential roles in cancer pathogenesis. Mol Cancer Res. 2011;9:531–7.
pubmed: 21450906
pmcid: 4017946
doi: 10.1158/1541-7786.MCR-10-0443
Lindeboom RG, van Voorthuijsen L, Oost KC, Rodríguez‐Colman MJ, Luna‐Velez MV, Furlan C, et al. Integrative multi‐omics analysis of intestinal organoid differentiation. Mol Syst Biol. 2018;14:e8227.
pubmed: 29945941
pmcid: 6018986
doi: 10.15252/msb.20188227
Santiago L, Daniels G, Wang D, Deng M, Lee P. Wnt signaling pathway protein LEF1 in cancer, as a biomarker for prognosis and a target for treatment. Am J Cancer Res. 2017;7:1389–406.
pubmed: 28670499
pmcid: 5489786
Hou Z, Guo K, Sun X, Hu F, Chen Q, Luo X, et al. TRIB2 functions as novel oncogene in colorectal cancer by blocking cellular senescence through AP4/p21 signaling. Mol Cancer. 2018;17:1–15.
doi: 10.1186/s12943-018-0922-x
Yamamoto H, Iku S, Adachi Y, Imsumran A, Taniguchi H, Nosho K, et al. Association of trypsin expression with tumour progression and matrilysin expression in human colorectal cancer. J Pathol. 2003;199:176–84.
pubmed: 12533830
doi: 10.1002/path.1277
Li S, Wei X, He J, Tian X, Yuan S, Sun L. Plasminogen activator inhibitor-1 in cancer research. Biomed Pharmacother. 2018;105:83–94.
pubmed: 29852393
doi: 10.1016/j.biopha.2018.05.119
Chaturvedi V, Fournier-Level A, Cooper HM, Murray MJ. Loss of Neogenin1 in human colorectal carcinoma cells causes a partial EMT and wound-healing response. Sci Rep. 2019;9:1–15.
doi: 10.1038/s41598-019-40886-y
Marisa L, de Reyniès A, Duval A, Selves J, Gaub MP, Vescovo L, et al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 2013;10:e1001453.
pubmed: 23700391
pmcid: 3660251
doi: 10.1371/journal.pmed.1001453
Yin N, Liu Y, Khoor A, Wang X, Thompson EA, Leitges M, et al. Protein kinase Cι and Wnt/β-Cateninsignaling: alternative pathways to Kras/Trp53-Driven lung adenocarcinoma. Cancer Cell. 2019;36:156–.e7.
pubmed: 31378680
pmcid: 6693680
doi: 10.1016/j.ccell.2019.07.002
Mouradov D, Sloggett C, Jorissen RN, Love CG, Li S, Burgess AW, et al. Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res. 2014;74:3238–47.
pubmed: 24755471
doi: 10.1158/0008-5472.CAN-14-0013
Berg KCG, Eide PW, Eilertsen IA, Johannessen B, Bruun J, Danielsen SA, et al. Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies. Mol Cancer. 2017;16:1–16.
doi: 10.1186/s12943-017-0691-y
Román-Fernández A, Bryant DM. Complex polarity: building multicellular tissues through apical membrane. Traffic Traffic. 2016;17:1244–61.
pubmed: 27281121
doi: 10.1111/tra.12417
Maiden SL, Hardin J. The secret life of α-catenin: moonlighting in morphogenesis. J Cell Biol. 2011;195:543–52.
pubmed: 22084304
pmcid: 3257527
doi: 10.1083/jcb.201103106
Compton CC. Colorectal carcinoma: diagnostic, prognostic, and molecular features. Mod Pathol. 2003;16:376–88.
pubmed: 12692203
doi: 10.1097/01.MP.0000062859.46942.93
Shibata H, Takano H, Ito M, Shioya H, Hirota M, Matsumoto H, et al. Alpha-Catenin is essential in intestinal adenoma formation. Proc Natl Acad Sci. 2007;104:18199–204.
pubmed: 17989230
pmcid: 2084320
doi: 10.1073/pnas.0705730104
Short SP, Kondo J, Smalley-Freed WG, Takeda H, Dohn MR, Powell AE, et al. p120-Catenin is an obligate haploinsufficient tumor suppressor in intestinal neoplasia. J Clin Invest. 2017;127:4462–76.
pubmed: 29130932
pmcid: 5707165
doi: 10.1172/JCI77217
Elia AEH, Wang DC, Willis NA, Boardman AP, Hajdu I, Adeyemi RO, et al. RFWD3-dependent ubiquitination of RPA regulates repair at stalled replication forks. Mol Cell. 2015;60:280–93.
pubmed: 26474068
pmcid: 4609029
doi: 10.1016/j.molcel.2015.09.011
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.
pubmed: 24157548
pmcid: 3969860
doi: 10.1038/nprot.2013.143
Lee GY, Kenny PA, Lee EH, Bissell MJ. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods. 2007;4:359–65.
pubmed: 17396127
pmcid: 2933182
doi: 10.1038/nmeth1015
Gogarten SM, Bhangale T, Conomos MP, Laurie CA, McHugh CP, Painter I, et al. GWASTools: An R/Bioconductor package for quality control and analysis of genome-wide association studies. Bioinformatics. 2012;28:3329–31.
pubmed: 23052040
pmcid: 3519456
doi: 10.1093/bioinformatics/bts610
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.
pubmed: 16199517
pmcid: 1239896
doi: 10.1073/pnas.0506580102
Cortazar AR, Torrano V, Martín-Martín N, Caro-Maldonado A, Camacho L, Hermanova I, et al. Cancertool: A visualization and representation interface to exploit cancer datasets. Cancer Res. 2018;78:6320–8.
pubmed: 30232219
doi: 10.1158/0008-5472.CAN-18-1669
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–8.
pubmed: 11846609
doi: 10.1006/meth.2001.1262
Humphries BA, Buschhaus JM, Chen YC, Haley HR, Qyli T, Chiang B, et al. Plasminogen activator inhibitor 1 (PAI1) promotes actin cytoskeleton reorganization and glycolytic metabolism in triple-negative breast cancer. Mol Cancer Res. 2019;17:1142–54.
pubmed: 30718260
pmcid: 6497540
doi: 10.1158/1541-7786.MCR-18-0836
Wang J, Zhang J, Xu L, Zheng Y, Ling D, Yang Z. Expression of HNF4G and its potential functions in lung cancer. Oncotarget. 2018;9:18018–28.
pubmed: 29719587
doi: 10.18632/oncotarget.22933