KRAS phosphorylation regulates cell polarization and tumorigenic properties in colorectal cancer.


Journal

Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562

Informations de publication

Date de publication:
09 2021
Historique:
received: 26 05 2020
accepted: 19 07 2021
revised: 07 06 2021
pubmed: 2 8 2021
medline: 31 12 2021
entrez: 1 8 2021
Statut: ppublish

Résumé

Oncogenic mutations of KRAS are found in the most aggressive human tumors, including colorectal cancer. It has been suggested that oncogenic KRAS phosphorylation at Ser181 modulates its activity and favors cell transformation. Using nonphosphorylatable (S181A), phosphomimetic (S181D), and phospho-/dephosphorylatable (S181) oncogenic KRAS mutants, we analyzed the role of this phosphorylation to the maintenance of tumorigenic properties of colorectal cancer cells. Our data show that the presence of phospho-/dephosphorylatable oncogenic KRAS is required for preserving the epithelial organization of colorectal cancer cells in 3D cultures, and for supporting subcutaneous tumor growth in mice. Interestingly, gene expression differed according to the phosphorylation status of KRAS. In DLD-1 cells, CTNNA1 was only expressed in phospho-/dephosphorylatable oncogenic KRAS-expressing cells, correlating with cell polarization. Moreover, lack of oncogenic KRAS phosphorylation leads to changes in expression of genes related to cell invasion, such as SERPINE1, PRSS1,2,3, and NEO1, and expression of phosphomimetic oncogenic KRAS resulted in diminished expression of genes involved in enterocyte differentiation, such as HNF4G. Finally, the analysis, in a public data set of human colorectal cancer, of the gene expression signatures associated with phosphomimetic and nonphosphorylatable oncogenic KRAS suggests that this post-translational modification regulates tumor progression in patients.

Identifiants

pubmed: 34333552
doi: 10.1038/s41388-021-01967-3
pii: 10.1038/s41388-021-01967-3
doi:

Substances chimiques

KRAS protein, human 0
NEO1 protein, human 0
Nerve Tissue Proteins 0
Plasminogen Activator Inhibitor 1 0
Receptors, Cell Surface 0
SERPINE1 protein, human 0
PRSS2 protein, human 103964-84-7
Trypsinogen 9002-08-8
PRSS1 protein, human EC 3.4.21.4
PRSS3 protein, human EC 3.4.21.4
Trypsin EC 3.4.21.4
Proto-Oncogene Proteins p21(ras) EC 3.6.5.2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5730-5740

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3:459–65.
pubmed: 12778136 doi: 10.1038/nrc1097
Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature. 1991;349:117–27.
pubmed: 1898771 doi: 10.1038/349117a0
Hancock JF, Magee AI, Childs JE, Marshall CJ. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell. 1989;57:1167–77.
pubmed: 2661017 doi: 10.1016/0092-8674(89)90054-8
Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell. 2017;170:17–33.
pubmed: 28666118 pmcid: 5555610 doi: 10.1016/j.cell.2017.06.009
Chandra A, Grecco HE, Pisupati V, Perera D, Cassidy L, Skoulidis F, et al. The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of Ras family proteins. Nat Cell Biol. 2012;14:148–58.
doi: 10.1038/ncb2394
Alvarez-Moya B, López-Alcalá C, Drosten M, Bachs O, Agell N. K-Ras4B phosphorylation at Ser181 is inhibited by calmodulin and modulates K-Ras activity and function. Oncogene. 2010;29:5911–22.
pubmed: 20802526 doi: 10.1038/onc.2010.298
Stephen AG, Esposito D, Bagni RG, McCormick F. Dragging ras back in the ring. Cancer Cell. 2014;25:272–81.
pubmed: 24651010 doi: 10.1016/j.ccr.2014.02.017
Shalom-Feuerstein R, Plowman SJ, Rotblat B, Ariotti N, Tian T, Hancock JF, et al. K-ras nanoclustering is subverted by overexpression of the scaffold protein galectin-3. Cancer Res. 2008;68:6608–16.
pubmed: 18701484 pmcid: 2587079 doi: 10.1158/0008-5472.CAN-08-1117
Lopez-Alcalá C, Alvarez-Moya B, Villalonga P, Calvo M, Bachs O, Agell N. Identification of essential interacting elements in K-Ras/calmodulin binding and its role in K-Ras localization. J Biol Chem. 2008;283:10621–31.
pubmed: 18182391 doi: 10.1074/jbc.M706238200
Garrido E, Lázaro J, Jaumot M, Agell N, Rubio-Martinez J. Modeling and subtleties of K-Ras and calmodulin interaction. PLoS Comput Biol. 2018;14:1–19.
doi: 10.1371/journal.pcbi.1006552
Villalonga P, López-Alcalá C, Bosch M, Chiloeches A, Rocamora N, Gil J, et al. Calmodulin binds to K-Ras, but not to H- or N-Ras, and modulates its downstream signaling. Mol Cell Biol. 2001;21:7345–54.
pubmed: 11585916 pmcid: 99908 doi: 10.1128/MCB.21.21.7345-7354.2001
Barceló C, Etchin J, Mansour MR, Sanda T, Ginesta MM, Sanchez-Arévalo Lobo VJ. et al. Ribonucleoprotein HNRNPA2B1 interacts with and regulates oncogenic KRAS in pancreatic ductal adenocarcinoma cells. Gastroenterology. 2014;147:882–92.
pubmed: 24998203 doi: 10.1053/j.gastro.2014.06.041
Inder KL, Lau C, Loo D, Chaudhary N, Goodall A, Martin S, et al. Nucleophosmin and nucleolin regulate K-Ras plasma membrane interactions and MAPK signal transduction. J Biol Chem. 2009;284:28410–9.
pubmed: 19661056 pmcid: 2788890 doi: 10.1074/jbc.M109.001537
Lee S, Jeong W, Cho Y, Cha P, Yoon J, Ro EJ, et al. β‐Catenin‐RAS interaction serves as a molecular switch for RAS degradation via GSK3β. EMBO Rep. 2018;19:e46060.
Villalonga P, López-Alcalá C, Chiloeches A, Gil J, Marais R, Bachs O, et al. Calmodulin prevents activation of Ras by PKC in 3T3 fibroblasts. J Biol Chem. 2002;277:37929–35.
pubmed: 12151388 doi: 10.1074/jbc.M202245200
Barceló C, Paco N, Beckett AJ, Alvarez-Moya B, Garrido E, Gelabert M, et al. Oncogenic K-ras segregates at spatially distinct plasma membrane signaling platforms according to its phosphorylation status. J Cell Sci. 2013;126:4553–9.
pubmed: 23943869
Yang MH, Nickerson S, Kim ET, Liot C, Laurent G, Spang R, et al. Regulation of RAS oncogenicity by acetylation. Proc Natl Acad Sci USA. 2012;109:10843–8.
pubmed: 22711838 pmcid: 3390846 doi: 10.1073/pnas.1201487109
Barcelo C, Paco N, Morell M, Alvarez-Moya B, Bota-Rabassedas N, Jaumot M, et al. Phosphorylation at Ser-181 of oncogenic KRAS is required for tumor growth. Cancer Res. 2014;74:1190–9.
pubmed: 24371225 doi: 10.1158/0008-5472.CAN-13-1750
Wang MT, Holderfield M, Galeas J, Delrosario R, To MD, Balmain A, et al. K-Ras promotes tumorigenicity through suppression of non-canonical Wnt signaling. Cell. 2015;163:1237–51.
pubmed: 26590425 doi: 10.1016/j.cell.2015.10.041
Bivona TG, Quatela SE, Bodemann BO, Ahearn IM, Soskis MJ, Mor A, et al. PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol Cell. 2006;21:481–93.
pubmed: 16483930 doi: 10.1016/j.molcel.2006.01.012
Sasaki AT, Carracedo A, Locasale JW, Anastasiou D, Takeuchi K, Kahoud ER, et al. Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors. Sci Signal. 2011;4:ra13.
pubmed: 21386094 pmcid: 3437993 doi: 10.1126/scisignal.2001518
Vartanian S, Bentley C, Brauer MJ, Li L, Shirasawa S, Sasazuki T, et al. Identification of mutant K-Ras-dependent phenotypes using a panel of isogenic cell lines. J Biol Chem. 2013;288:2403–13.
pubmed: 23188824 doi: 10.1074/jbc.M112.394130
Shirasawa S, Furuse M, Yokoyama N, Sasazuki T. Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science. (80-). 1993;260:85. LP – 88
doi: 10.1126/science.8465203
Brookes MJ, Hughes S, Turner FE, Reynolds G, Sharma N, Ismail T, et al. Modulation of iron transport proteins in human colorectal carcinogenesis. Gut. 2006;55:1449–60.
pubmed: 16641131 pmcid: 1856421 doi: 10.1136/gut.2006.094060
Hu DG, Mackenzie PI, McKinnon RA, Meech R. Genetic polymorphisms of human UDP-glucuronosyltransferase (UGT) genes and cancer risk. Drug Metab Rev. 2016;48:47–69.
pubmed: 26828111 doi: 10.3109/03602532.2015.1131292
Maher DM, Gupta BK, Nagata S, Jaggi M, Chauhan SC. Mucin 13: Structure, function, and potential roles in cancer pathogenesis. Mol Cancer Res. 2011;9:531–7.
pubmed: 21450906 pmcid: 4017946 doi: 10.1158/1541-7786.MCR-10-0443
Lindeboom RG, van Voorthuijsen L, Oost KC, Rodríguez‐Colman MJ, Luna‐Velez MV, Furlan C, et al. Integrative multi‐omics analysis of intestinal organoid differentiation. Mol Syst Biol. 2018;14:e8227.
pubmed: 29945941 pmcid: 6018986 doi: 10.15252/msb.20188227
Santiago L, Daniels G, Wang D, Deng M, Lee P. Wnt signaling pathway protein LEF1 in cancer, as a biomarker for prognosis and a target for treatment. Am J Cancer Res. 2017;7:1389–406.
pubmed: 28670499 pmcid: 5489786
Hou Z, Guo K, Sun X, Hu F, Chen Q, Luo X, et al. TRIB2 functions as novel oncogene in colorectal cancer by blocking cellular senescence through AP4/p21 signaling. Mol Cancer. 2018;17:1–15.
doi: 10.1186/s12943-018-0922-x
Yamamoto H, Iku S, Adachi Y, Imsumran A, Taniguchi H, Nosho K, et al. Association of trypsin expression with tumour progression and matrilysin expression in human colorectal cancer. J Pathol. 2003;199:176–84.
pubmed: 12533830 doi: 10.1002/path.1277
Li S, Wei X, He J, Tian X, Yuan S, Sun L. Plasminogen activator inhibitor-1 in cancer research. Biomed Pharmacother. 2018;105:83–94.
pubmed: 29852393 doi: 10.1016/j.biopha.2018.05.119
Chaturvedi V, Fournier-Level A, Cooper HM, Murray MJ. Loss of Neogenin1 in human colorectal carcinoma cells causes a partial EMT and wound-healing response. Sci Rep. 2019;9:1–15.
doi: 10.1038/s41598-019-40886-y
Marisa L, de Reyniès A, Duval A, Selves J, Gaub MP, Vescovo L, et al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 2013;10:e1001453.
pubmed: 23700391 pmcid: 3660251 doi: 10.1371/journal.pmed.1001453
Yin N, Liu Y, Khoor A, Wang X, Thompson EA, Leitges M, et al. Protein kinase Cι and Wnt/β-Cateninsignaling: alternative pathways to Kras/Trp53-Driven lung adenocarcinoma. Cancer Cell. 2019;36:156–.e7.
pubmed: 31378680 pmcid: 6693680 doi: 10.1016/j.ccell.2019.07.002
Mouradov D, Sloggett C, Jorissen RN, Love CG, Li S, Burgess AW, et al. Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res. 2014;74:3238–47.
pubmed: 24755471 doi: 10.1158/0008-5472.CAN-14-0013
Berg KCG, Eide PW, Eilertsen IA, Johannessen B, Bruun J, Danielsen SA, et al. Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies. Mol Cancer. 2017;16:1–16.
doi: 10.1186/s12943-017-0691-y
Román-Fernández A, Bryant DM. Complex polarity: building multicellular tissues through apical membrane. Traffic Traffic. 2016;17:1244–61.
pubmed: 27281121 doi: 10.1111/tra.12417
Maiden SL, Hardin J. The secret life of α-catenin: moonlighting in morphogenesis. J Cell Biol. 2011;195:543–52.
pubmed: 22084304 pmcid: 3257527 doi: 10.1083/jcb.201103106
Compton CC. Colorectal carcinoma: diagnostic, prognostic, and molecular features. Mod Pathol. 2003;16:376–88.
pubmed: 12692203 doi: 10.1097/01.MP.0000062859.46942.93
Shibata H, Takano H, Ito M, Shioya H, Hirota M, Matsumoto H, et al. Alpha-Catenin is essential in intestinal adenoma formation. Proc Natl Acad Sci. 2007;104:18199–204.
pubmed: 17989230 pmcid: 2084320 doi: 10.1073/pnas.0705730104
Short SP, Kondo J, Smalley-Freed WG, Takeda H, Dohn MR, Powell AE, et al. p120-Catenin is an obligate haploinsufficient tumor suppressor in intestinal neoplasia. J Clin Invest. 2017;127:4462–76.
pubmed: 29130932 pmcid: 5707165 doi: 10.1172/JCI77217
Elia AEH, Wang DC, Willis NA, Boardman AP, Hajdu I, Adeyemi RO, et al. RFWD3-dependent ubiquitination of RPA regulates repair at stalled replication forks. Mol Cell. 2015;60:280–93.
pubmed: 26474068 pmcid: 4609029 doi: 10.1016/j.molcel.2015.09.011
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.
pubmed: 24157548 pmcid: 3969860 doi: 10.1038/nprot.2013.143
Lee GY, Kenny PA, Lee EH, Bissell MJ. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods. 2007;4:359–65.
pubmed: 17396127 pmcid: 2933182 doi: 10.1038/nmeth1015
Gogarten SM, Bhangale T, Conomos MP, Laurie CA, McHugh CP, Painter I, et al. GWASTools: An R/Bioconductor package for quality control and analysis of genome-wide association studies. Bioinformatics. 2012;28:3329–31.
pubmed: 23052040 pmcid: 3519456 doi: 10.1093/bioinformatics/bts610
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Cortazar AR, Torrano V, Martín-Martín N, Caro-Maldonado A, Camacho L, Hermanova I, et al. Cancertool: A visualization and representation interface to exploit cancer datasets. Cancer Res. 2018;78:6320–8.
pubmed: 30232219 doi: 10.1158/0008-5472.CAN-18-1669
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–8.
pubmed: 11846609 doi: 10.1006/meth.2001.1262
Humphries BA, Buschhaus JM, Chen YC, Haley HR, Qyli T, Chiang B, et al. Plasminogen activator inhibitor 1 (PAI1) promotes actin cytoskeleton reorganization and glycolytic metabolism in triple-negative breast cancer. Mol Cancer Res. 2019;17:1142–54.
pubmed: 30718260 pmcid: 6497540 doi: 10.1158/1541-7786.MCR-18-0836
Wang J, Zhang J, Xu L, Zheng Y, Ling D, Yang Z. Expression of HNF4G and its potential functions in lung cancer. Oncotarget. 2018;9:18018–28.
pubmed: 29719587 doi: 10.18632/oncotarget.22933

Auteurs

Débora Cabot (D)

Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.

Sònia Brun (S)

Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.

Noelia Paco (N)

Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.

Mireia M Ginesta (MM)

Hereditary Cancer Program, Translational Research Laboratory, Catalan Institute of Oncology, ICO-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain and Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Madrid, Spain.

Núria Gendrau-Sanclemente (N)

Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Hospital Duran i Reynals, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.

Baraa Abuasaker (B)

Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.

Triana Ruiz-Fariña (T)

Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.

Carles Barceló (C)

Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain.

Miriam Cuatrecasas (M)

Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona; Pathology Department and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) and Tumor Bank-Biobank, Hospital Clínic, Barcelona, Spain.

Marta Bosch (M)

Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.

Carles Rentero (C)

Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.

Gabriel Pons (G)

Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona and Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.

Josep M Estanyol (JM)

Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
Proteomics Unit, CCiT-UB, Universitat de Barcelona, Barcelona, Spain.

Gabriel Capellà (G)

Hereditary Cancer Program, Translational Research Laboratory, Catalan Institute of Oncology, ICO-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain and Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Madrid, Spain.

Montserrat Jaumot (M)

Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain. mjaumot@ub.edu.
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. mjaumot@ub.edu.

Neus Agell (N)

Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain. neusagell@ub.edu.
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. neusagell@ub.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH