Bacillus cereus food intoxication and toxicoinfection.
Journal
Comprehensive reviews in food science and food safety
ISSN: 1541-4337
Titre abrégé: Compr Rev Food Sci Food Saf
Pays: United States
ID NLM: 101305205
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
revised:
13
05
2021
received:
17
12
2020
accepted:
15
05
2021
pubmed:
24
6
2021
medline:
26
10
2021
entrez:
23
6
2021
Statut:
ppublish
Résumé
Bacillus cereus is one of the leading etiological agents of toxin-induced foodborne diseases. Its omnipresence in different environments, spore formation, and its ability to adapt to varying conditions and produce harmful toxins make this pathogen a health hazard that should not be underestimated. Food poisoning by B. cereus can manifest itself as an emetic or diarrheal syndrome. The former is caused by the release of the potent peptide toxin cereulide, whereas the latter is the result of proteinaceous enterotoxins (e.g., hemolysin BL, nonhemolytic enterotoxin, and cytotoxin K). The final harmful effect is not only toxin and strain dependent, but is also affected by the stress responses, accessory virulence factors, and phenotypic properties under extrinsic, intrinsic, and explicit food conditions and host-related environment. Infamous portrait of B. cereus as a foodborne pathogen, as well as a causative agent of nongastrointestinal infections and even nosocomial complications, has inspired vast volumes of multidisciplinary research in food and clinical domains. As a result, extensive original data became available asking for a new, both broad and deep, multifaceted look into the current state-of-the art regarding the role of B. cereus in food safety. In this review, we first provide an overview of the latest knowledge on B. cereus toxins and accessory virulence factors. Second, we describe the novel taxonomy and some of the most pertinent phenotypic characteristics of B. cereus related to food safety. We link these aspects to toxin production, overall pathogenesis, and interactions with its human host. Then we reflect on the prevalence of different toxinotypes in foods opening the scene for epidemiological aspects of B. cereus foodborne diseases and methods available to prevent food poisoning including overview of the different available methods to detect B. cereus and its toxins.
Identifiants
pubmed: 34160120
doi: 10.1111/1541-4337.12785
doi:
Substances chimiques
Emetics
0
Enterotoxins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
3719-3761Informations de copyright
© 2021 Institute of Food Technologists®.
Références
Abakari, G., Cobbina, S. J., & Yeleliere, E. (2018). Microbial quality of ready-to-eat vegetable salads vended in the central business district of Tamale, Ghana. International Journal of Food Contamination, 5(1), 3. https://doi.org/10.1186/s40550-018-0065-2
Abdulmawjood, A., Herrmann, J., Riede, S., Jimenez, G., Becker, A., & Breves, G. (2019). Evaluation of enterotoxin gene expression and enterotoxin production capacity of the probiotic strain Bacillus toyonensis BCT-7112T. PLoS ONE, 14(4), e0214536. https://doi.org/10.1371/journal.pone.0214536
Abia, W. A., Warth, B., Ezekiel, C. N., Sarkanj, B., Turner, P. C., Marko, D., Krska, R., & Sulyok, M. (2017). Uncommon toxic microbial metabolite patterns in traditionally home-processed maize dish (fufu) consumed in rural Cameroon. Food and Chemical Toxicology, 107, 10-19. https://doi.org/10.1016/j.fct.2017.06.011
Adame-Gómez, R., Muñoz-Barrios, S., Castro-Alarcón, N., Leyva-Vázquez, M. A., Toribio-Jiménez, J., & Ramírez-Peralta, A. (2020). Prevalence of the strains of Bacillus cereus group in artisanal Mexican cheese. Foodborne Pathogens and Disease, 17(1), 8-14. https://doi.org/10.1089/fpd.2019.2673
Agaisse, H., Gominet, M., Økstad, O. A., Kolstø, A. B., & Lereclus, D. (1999). PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Molecular Microbiology, 32(5), 1043-1053. https://doi.org/10.1046/j.1365-2958.1999.01419.x
Agata, N., Mori, M., Ohta, M., Suwan, S., Ohtani, I., & Isobe, M. (1994). A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in HEp-2 cells. FEMS Microbiology Letters, 121(1), 31-34.
Agata, N., Ohta, M., Mori, M., & Isobe, M. (1995). A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiology Letters, 129(1), 17-19.
Agata, N., Ohta, M., & Yokoyama, K. (2002). Production of Bacillus cereus emetic toxin (cereulide) in various foods. International Journal of Food Microbiology, 73(1), 23-27.
Albina, J. E., Henry, W. L., Mastrofrancesco, B., Martin, B. A., & Reichner, J. S. (1995). Macrophage activation by culture in an anoxic environment. Journal of Immunology, 155(9), 4391-4396.
Álvarez-Ordóñez, A., Fernández, A., Bernardo, A., & López, M. (2010). Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures. Food Microbiology, 27(1), 44-49. https://doi.org/10.1016/j.fm.2009.07.015
Amor, M. G. B., Siala, M., Zayani, M., Grosset, N., Smaoui, S., Messadi-Akrout, F., Baron, F., Jan, S., Gautier, M., & Gdoura, R. (2018). Isolation, identification, prevalence, and genetic diversity of Bacillus cereus group bacteria from different foodstuffs in Tunisia. Frontiers in Microbiology, 9(3), 1-12. https://doi.org/10.3389/fmicb.2018.00447
Andersson, A., Ronner, U., & Granum, P. E. (1995). What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens? International Journal of Food Microbiology, 28(2), 145-155.
Andersson, M. A., Jääskeläinen, E. L., Shaheen, R., Pirhonen, T., Wijnands, L. M., & Salkinoja-Salonen, M. S. (2004). Sperm bioassay for rapid detection of cereulide-producing Bacillus cereus in food and related environments. International Journal of Food Microbiology, 94(2), 175-183. https://doi.org/10.1016/j.ijfoodmicro.2004.01.018
Andreeva, Z. I., Nesterenko, V. F., Yurkov, I. S., Budarina, Z. I., Sineva, E. V., & Solonin, A. S. (2006). Purification and cytotoxic properties of Bacillus cereus hemolysin II. Protein Expression and Purification, 47(1), 186-193. https://doi.org/10.1016/j.pep.2005.10.030
Ankolekar, C., Rahmati, T., & Labbé, R. G. (2009). Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in U.S. rice. International Journal of Food Microbiology, 128(3), 460-466. https://doi.org/10.1016/j.ijfoodmicro.2008.10.006
Arslan, S., Eyi, A., & Küçüksarı, R. (2014). Toxigenic genes, spoilage potential, and antimicrobial resistance of Bacillus cereus group strains from ice cream. Anaerobe, 25, 42-46. https://doi.org/10.1016/j.anaerobe.2013.11.006
Asano, S. I., Nukumizu, Y., Bando, H., Iizuka, T., & Yamamoto, T. (1997). Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis. Applied and Environmental Microbiology, 63(3), 1054-1057. https://doi.org/10.1128/aem.63.3.1054-1057.1997
Bağcıoğlu, M., Fricker, M., Johler, S., & Ehling-Schulz, M. (2019). Detection and identification of Bacillus cereus, Bacillus cytotoxicus, Bacillus thuringiensis, Bacillus mycoides and Bacillus weihenstephanensis via machine learning based FTIR spectroscopy. Frontiers in Microbiology, 10, 1-10. https://doi.org/10.3389/fmicb.2019.00902
Baida, G. E., & Kuzmin, N. P. (1996). Mechanism of action of hemolysin III from Bacillus cereus. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1284(2), 122-124. https://doi.org/10.1016/S0005-2736(96)00168-X
Baida, G., Budarina, Z. I., Kuzmin, N. P., & Solonin, A. S. (1999). Complete nucleotide sequence and molecular characterization of hemolysin II gene from Bacillus cereus. FEMS Microbiology Letters, 180(1), 7-14.
Banerjee, P., Lenz, D., Robinson, J. P., Rickus, J. L., & Bhunia, A. K. (2008). A novel and simple cell-based detection system with a collagen-encapsulated B-lymphocyte cell line as a biosensor for rapid detection of pathogens and toxins. Laboratory Investigation, 88(2), 196-206. https://doi.org/10.1038/labinvest.3700703
Batchoun, R., Al-Sha'er, A. I., & Khabour, O. F. (2011). Molecular characterization of Bacillus cereus toxigenic strains isolated from different food matrices in Jordan. Foodborne Pathogens and Disease, 8(11), 1153-1158. https://doi.org/10.1089/fpd.2011.0853
Bauer, T., Sipos, W., Stark, T. D., Käser, T., Knecht, C., Brunthaler, R., Saalmüller, A., Hofmann, T., & Ehling-Schulz, M. (2018). First insights into within host translocation of the Bacillus cereus toxin cereulide using a porcine model. Frontiers in Microbiology, 9, 2652. https://doi.org/10.3389/fmicb.2018.02652
Beasley, D. E., Koltz, A. M., Lambert, J. E., Fierer, N., & Dunn, R. R. (2015). The evolution of stomach acidity and its relevance to the human microbiome. PLoS ONE, 10(7), e0134116. https://doi.org/10.1371/journal.pone.0134116
Beattie, S. H., & Williams, A. G. (1999). Detection of toxigenic strains of Bacillus cereus and other Bacillus spp. with an improved cytotoxicity assay. Letters in Applied Microbiology, 28(3), 221-225. https://doi.org/10.1046/j.1365-2672.1999.00498.x
Beecher, D. J., & Macmillan, J. D. (1990). A novel bicomponent hemolysin from Bacillus cereus. Infection and Immunity, 58(7), 2220-2227. https://doi.org/10.1128/iai.58.7.2220-2227.1990
Beecher, D. J., & MacMillan, J. D. (1991). Characterization of the components of hemolysin BL from Bacillus cereus. Infection and Immunity, 59(5), 1778-1784.
Beecher, D. J., Olsen, T. W., Somers, E. B., & Wong, A. C. (2000). Evidence for contribution of tripartite hemolysin BL, phosphatidylcholine-preferring phospholipase C, and collagenase to virulence of Bacillus cereus endophthalmitis. Infection and Immunity, 68(9), 5269-5276. https://doi.org/10.1128/IAI.68.9.5269-5276.2000
Beecher, D. J., Schoeni, J. L., & Lee Wong, A. C. (1995). Enterotoxic activity of hemolysin BL from Bacillus cereus. Infection and Immunity, 63(11), 4423-4428.
Beecher, D. J., & Wong, A. C. L. (1994). Identification and analysis of the antigens detected by two commercial Bacillus cereus diarrheal enterotoxin immunoassay kits. Applied and Environmental Microbiology, 60(12), 4614-4616. https://doi.org/10.1128/aem.60.12.4614-4616.1994
Beecher, D. J., & Wong, A. C. L. (1997). Tripartite hemolysin BL from Bacillus cereus hemolytic analysis of component interactions and a model for its characteristic paradoxical zone phenomenon. Journal of Biological Chemistry, 272(1), 233-239. https://doi.org/10.1074/jbc.272.1.233
Beecher, D. J., & Wong, A. C. L. (2000). Cooperative, synergistic and antagonistic haemolytic interactions between haemolysin BL, phosphatidylcholine phospholipase C and sphingomyelinase from Bacillus cereus. Microbiology, 146(12), 3033-3039. https://doi.org/10.1099/00221287-146-12-3033
Begley, M., Gahan, C. G. M., & Hill, C. (2005). The interaction between bacteria and bile. FEMS Microbiology Reviews, 29(4), 625-651. https://doi.org/10.1016/j.femsre.2004.09.003
Bennett, S. D., Walsh, K. A., & Gould, L. H. (2013). Foodborne disease outbreaks caused by Bacillus cereus, Clostridium perfringens, and Staphylococcus aureus - United States, 1998-2008. Clinical Infectious Diseases, 57(3), 425-433. https://doi.org/10.1093/cid/cit244
Bernardeau, M., Lehtinen, M. J., Forssten, S. D., & Nurminen, P. (2017). Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. Journal of Food Science and Technology, 54(8), 2570-2584. https://doi.org/10.1007/s13197-017-2688-3
Berthold-Pluta, A., Pluta, A., Garbowska, M., & Stefańska, I. (2019). Prevalence and toxicity characterization of Bacillus cereus in food products from Poland. Foods, 8(7), 269. https://doi.org/10.3390/foods8070269
Biesta-Peters, E. G., Dissel, S., Reij, M. W., Zwietering, M. H., & In't Veld, P. H. (2016). Characterization and exposure assessment of emetic bacillus cereus and cereulide production in food products on the Dutch market. Journal of Food Protection, 79(2), 230-238. https://doi.org/10.4315/0362-028X.JFP-15-217
Biesta-Peters, E. G., Reij, M. W., Blaauw, R. H., In't Veld, P. H., Rajkovic, A., Ehling-Schulz, M., & Abee, T. (2010). Quantification of the emetic toxin cereulide in food products by liquid chromatography-mass spectrometry using synthetic cereulide as a standard. Applied and Environmental Microbiology, 76(22), 7466-7472. https://doi.org/10.1128/AEM.01659-10
Böhm, M., Huptas, C., Krey, V. M., & Scherer, S. (2015). Massive horizontal gene transfer, strictly vertical inheritance and ancient duplications differentially shape the evolution of Bacillus cereus enterotoxin operons hbl, cytK and nhe. BMC Evolutionary Biology, 15, 1-17. https://doi.org/10.1186/s12862-015-0529-4
Bouillaut, L., Ramarao, N., Buisson, C., Gilois, N., Gohar, M., Lereclus, D., & Nielsen-LeRoux, C. (2005). FlhA influences Bacillus thuringiensis PlcR-regulated gene transcription, protein production, and virulence. Applied and Environmental Microbiology, 71(12), 8903-8910. https://doi.org/10.1128/AEM.71.12.8903-8910.2005
Browne, N., & Dowds, B. C. A. (2002). Acid stress in the food pathogen Bacillus cereus. Journal of Applied Microbiology, 92(3), 404-414. https://doi.org/10.1046/j.1365-2672.2002.01541.x
Callegan, M. C., Kane, S. T., Cochran, D. C., & Gilmore, M. S. (2002). Molecular mechanisms of Bacillus endophthalmitis pathogenesis. DNA and Cell Biology, 21(5), 367-373. https://doi.org/10.1089/10445490260099647
Carlin, F., Albagnac, C., Rida, A., Guinebretière, M. H., Couvert, O., & Nguyen-The, C. (2013). Variation of cardinal growth parameters and growth limits according to phylogenetic affiliation in the Bacillus cereus Group. Consequences for risk assessment. Food Microbiology, 33(1), 69-76. https://doi.org/10.1016/j.fm.2012.08.014
Carlin, F., Brillard, J., Broussolle, V., Clavel, T., Duport, C., Jobin, M., Guinebretière, M.-H., Auger, S., Sorokine, A., & Nguyen-Thé, C. (2010). Adaptation of Bacillus cereus, an ubiquitous worldwide-distributed foodborne pathogen, to a changing environment. Food Research International, 43(7), 1885-1894. https://doi.org/10.1016/j.foodres.2009.10.024
Carlin, F., Guinebretiere, M. H., Choma, C., Pasqualini, R., Braconnier, A., & Nguyen-The, C. (2000). Spore-forming bacteria in commercial cooked, pasteurised and chilled vegetable purees. Food Microbiology, 17(2), 153-165. https://doi.org/10.1006/fmic.1999.0299
Carreau, A., El Hafny-Rahbi, B., Matejuk, A., Grillon, C., & Kieda, C. (2011). Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. Journal of Cellular and Molecular Medicine, 15(6), 1239-1253. https://doi.org/10.1111/j.1582-4934.2011.01258.x
Carroll, L. M., Wiedmann, M., & Kovac, J. (2020). Proposal of a taxonomic nomenclature for the Bacillus cereus group which reconciles genomic definitions of bacterial species with clinical and industrial phenotypes. MBio, 11(1), e00034-20. https://doi.org/10.1128/mBio.00034-20
Castiaux, V., Liu, X., Delbrassinne, L., & Mahillon, J. (2015). Is Cytotoxin K from Bacillus cereus a bona fide enterotoxin? International Journal of Food Microbiology, 211, 79-85. https://doi.org/10.1016/j.ijfoodmicro.2015.06.020
Ceuppens, S., Boon, N., & Uyttendaele, M. (2013). Diversity of Bacillus cereus group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles. FEMS Microbiology Ecology, 84 (3), 433-450. https://doi.org/10.1111/1574-6941.12110
Ceuppens, S., Rajkovic, A., Hamelink, S., Van De Wiele, T., Boon, N., & Uyttendaele, M. (2012). Enterotoxin production by Bacillus cereus under gastrointestinal conditions and their immunological detection by commercially available kits. Foodborne Pathogens and Disease, 9(12), 1130-1136. https://doi.org/10.1089/fpd.2012.1230
Ceuppens, S., Rajkovic, A., Heyndrickx, M., Tsilia, V., Van De Wiele, T., Boon, N., & Uyttendaele, M. (2011). Regulation of toxin production by Bacillus cereus and its food safety implications. Critical Reviews in Microbiology, 37(3), 188-213. https://doi.org/10.3109/1040841X.2011.558832
Ceuppens, S., Uyttendaele, M., Hamelink, S., Boon, N., & Van De Wiele, T. (2012). Inactivation of Bacillus cereus vegetative cells by gastric acid and bile during in vitro gastrointestinal transit. Gut Pathogens, 4(11), 5-11. https://doi.org/10.1186/1757-4749-4-11
Ceuppens, S., Van de Wiele, T., Rajkovic, A., Ferrer-Cabaceran, T., Heyndrickx, M., Boon, N., & Uyttendaele, M. (2012). Impact of intestinal microbiota and gastrointestinal conditions on the in vitro survival and growth of Bacillus cereus. International Journal of Food Microbiology, 155(3), 241-246. https://doi.org/10.1016/j.ijfoodmicro.2012.02.013
Chang, H. J., Lee, J. H., Han, B. R., Kwak, T. K., & Kim, J. (2011). Prevalence of the levels of Bacillus cereus in fried rice dishes and its exposure assessment from Chinese-style restaurants. Food Science and Biotechnology, 20(5), 1351. https://doi.org/10.1007/s10068-011-0186-3
Chattopadhyay, P., & Banerjee, G. (2018). Recent advancement on chemical arsenal of Bt toxin and its application in pest management system in agricultural field. 3 Biotech, 8(4), 1-12. https://doi.org/10.1007/s13205-018-1223-1
Chen, C. H., Ding, H. C., & Chang, T. C. (2001). Rapid identification of Bacillus cereus based on the detection of a 28.5-kilodalton cell surface antigen. Journal of Food Protection, 64(3), 348-354. https://doi.org/10.4315/0362-028X-64.3.348
Choma, C., Guinebretière, M. H., Carlin, F., Schmitt, P., Velge, P., Granum, P. E., & Nguyen-The, C. (2000). Prevalence, characterization and growth of Bacillus cereus in commercial cooked chilled foods containing vegetables. Journal of Applied Microbiology, 88(4), 617-625. https://doi.org/10.1046/j.1365-2672.2000.00998.x
Chon, J. W., Kim, J. H., Lee, S. J., Hyeon, J. Y., Song, K. Y., Park, C., & Seo, K. H. (2012). Prevalence, phenotypic traits and molecular characterization of emetic toxin-producing Bacillus cereus strains isolated from human stools in Korea. Journal of Applied Microbiology, 112(5), 1042-1049. https://doi.org/10.1111/j.1365-2672.2012.05277.x
Chon, J., Yim, J., Kim, H., Kim, D., & Kim, H. (2015). Quantitative prevalence and toxin gene profile of Bacillus cereus from ready-to-eat vegetables in South Korea. Foodborne Pathogens and Disease, 12(9), 795-799. https://doi.org/10.1089/fpd.2015.1977
Chung, M. C., Popova, T. G., Millis, B. A., Mukherjee, D. V., Zhou, W., Liotta, L. A., Petricoin, E.F., Chandhoke, V., Bailey, C., & Popov, S. G. (2006). Secreted neutral metalloproteases of Bacillus anthracis as candidate pathogenic factors. Journal of Biological Chemistry, 281(42), 31408-31418. https://doi.org/10.1074/jbc.M605526200
Clair, G., Armengaud, J., & Duport, C. (2012). Restricting fermentative potential by proteome remodeling: An adaptive strategy evidenced in Bacillus cereus. Molecular & Cellular Proteomics, 11(6), M111.013102. https://doi.org/10.1074/mcp.M111.013102
Clair, G., Lorphelin, A., Armengaud, J., & Duport, C. (2013). OhrRA functions as a redox-responsive system controlling toxinogenesis in Bacillus cereus. Journal of Proteomics, 94, 527-539. https://doi.org/10.1016/j.jprot.2013.10.024
Clair, G., Roussi, S., Armengaud, J., & Duport, C. (2010). Expanding the known repertoire of virulence factors produced by Bacillus cereus through early secretome profiling in three redox conditions. Molecular & Cellular Proteomics, 9(7), 1486-1498. https://doi.org/10.1074/mcp.M000027-MCP201
Clavel, T., Carlin, F., Dargaignaratz, C., Lairon, D., Nguyen-The, C., & Schmitt, P. (2007). Effects of porcine bile on survival of Bacillus cereus vegetative cells and haemolysin BL enterotoxin production in reconstituted human small intestine media. Journal of Applied Microbiology, 103(5), 1568-1575. https://doi.org/10.1111/j.1365-2672.2007.03410.x
Clavel, T., Carlin, F., Lairon, D., Nguyen-The, C., & Schmitt, P. (2004). Survival of Bacillus cereus spores and vegetative cells in acid media simulating human stomach. Journal of Applied Microbiology, 97(1), 214-219. https://doi.org/10.1111/j.1365-2672.2004.02292.x
Colgan, S. P., & Taylor, C. T. (2010). Hypoxia: An alarm signal during intestinal inflammation. Nature Reviews Gastroenterology & Hepatology, 7(5), 281-287. https://doi.org/10.1038/nrgastro.2010.39
Cotter, P. D., & Hill, C. (2003). Surviving the acid test: Responses of gram-positive bacteria to low pH. Microbiology and Molecular Biology Reviews, 67(3), 429-453. https://doi.org/10.1128/MMBR.67.3.429
Cui, Y. F., Liu, Y., Liu, X. Y., Xia, X., Ding, S. Y., & Zhu, K. (2016). Evaluation of the toxicity and toxicokinetics of cereulide from an emetic Bacillus cereus strain of milk origin. Toxins, 8(6), 156. https://doi.org/10.3390/toxins8060156
Cui, Y., Liu, X., Dietrich, R., Märtlbauer, E., Cao, J., Ding, S., & Zhu, K. (2016). Characterization of Bacillus cereus isolates from local dairy farms in China. FEMS Microbiology Letters, 363(12), fnw096. https://doi.org/10.1093/femsle/fnw096
Decleer, M., Jovanovic, J., Vakula, A., Udovicki, B., Agoua, R. S. E. K., Madder, A., De Saeger, S., & Rajkovic, A. (2018). Oxygen consumption rate analysis of mitochondrial dysfunction caused by Bacillus cereus cereulide in Caco-2 and HepG2 cells. Toxins, 10(7), 266. https://doi.org/10.3390/toxins10070266
Decleer, M., Rajkovic, A., Sas, B., Madder, A., & De Saeger, S. (2016). Development and validation of ultra-high-performance liquid chromatography-tandem mass spectrometry methods for the simultaneous determination of beauvericin, enniatins (A, A1, B, B1) and cereulide in maize, wheat, pasta and rice. Journal of Chromatography A, 1472, 35-43. https://doi.org/10.1016/j.chroma.2016.10.003
Delbrassinne, L., Andjelkovic, M., Dierick, K., Denayer, S., Mahillon, J., & Van Loco, J. (2012). Prevalence and levels of Bacillus cereus emetic toxin in rice dishes randomly collected from restaurants and comparison with the levels measured in a recent foodborne outbreak. Foodborne Pathogens and Disease, 9(9), 809-814. https://doi.org/10.1089/fpd.2012.1168
Delbrassinne, L., Botteldoorn, N., Andjelkovic, M., Dierick, K., & Denayer, S. (2015). An emetic Bacillus cereus outbreak in a kindergarten: Detection and quantification of critical levels of cereulide toxin. Foodborne Pathogens and Disease, 12(1), 84-87. https://doi.org/10.1089/fpd.2014.1788
Denayer, S., Verhaegen, B.,Van Hoorde, K., & Dierick, K. (2018). National reference laboratory for foodborne outbreaks. Annual Report on foodborne outbreaks in Belgium 2018, Sciensano. Depotnummer: D/2019/14.440/48. https://www.sciensano.be/sites/default/files/jaarverslagboekje_vti2018_vlaanderen_2019.pdf
Deng, Y., Liu, Y., Jiang, Z., Wang, J., Zhang, Q., Qian, Y., Yuan, Y., Zhou, X., Fan, G., & Li, Y. (2019). A multiplex loop-mediated isothermal amplification assay for rapid detection of Bacillus cereus and Staphylococcus aureus. BioScience Trends, 13(6), 510-515. https://doi.org/10.5582/bst.2019.01267
van Der Voort, M., & Abee, T. (2009). Transcriptional regulation of metabolic pathways, alternative respiration and enterotoxin genes in anaerobic growth of Bacillus cereus ATCC 14579. Journal of Applied Microbiology, 107(3), 795-804. https://doi.org/10.1111/j.1365-2672.2009.04252.x
Dewey-Mattia, D., Manikonda, K., Hall, A. J., Wise, M. E., & Crowe, S. J. (2018). Surveillance for foodborne disease outbreaks - United States, 2009-2015. MMWR Surveillance Summaries, 67(10), 1-11. https://doi.org/10.15585/mmwr.ss6710a1
Didier, A., Jeßberger, N., Krey, V., Dietrich, R., Scherer, S., & Märtlbauer, E. (2015). The mutation Glu151Asp in the B-component of the Bacillus cereus non-hemolytic enterotoxin (Nhe) leads to a diverging reactivity in antibody-based detection systems. Toxins, 7(11), 4655-4667. https://doi.org/10.3390/toxins7114655
Dierick, K., Van Coillie, E., Swiecicka, I., Meyfroidt, G., Devlieger, H., Meulemans, A., Hoedemaekers, G., Fourie, L., Heyndrickx, M., & Mahillon, J. (2005). Fatal family outbreak of Bacillus cereus-associated food poisoning. Journal of Clinical Microbiology, 43(8), 4277-4279. https://doi.org/10.1128/JCM.43.8.4277
Doll, V. M., Ehling-Schulz, M., & Vogelmann, R. (2013). Concerted action of sphingomyelinase and non-hemolytic enterotoxin in pathogenic Bacillus cereus. PLoS ONE, 8(4), e61404. https://doi.org/10.1371/journal.pone.0061404
Dommel, M. K., Frenzel, E., Strasser, B., Blöchinger, C., Scherer, S., & Ehling-Schulz, M. (2010). Identification of the main promoter directing cereulide biosynthesis in emetic Bacillus cereus and its application for real-time monitoring of ces gene expression in foods. Applied and Environmental Microbiology, 76(4), 1232-1240. https://doi.org/10.1128/AEM.02317-09
Dommel, M. K., Lücking, G., Scherer, S., & Ehling-Schulz, M. (2011). Transcriptional kinetic analyses of cereulide synthetase genes with respect to growth, sporulation and emetic toxin production in Bacillus cereus. Food Microbiology, 28(2), 284-290. https://doi.org/10.1016/j.fm.2010.07.001
Ducrest, P. J., Pfammatter, S., Stephan, D., Vogel, G., Thibault, P., & Schnyder, B. (2019). Rapid detection of Bacillus ionophore cereulide in food products. Scientific Reports, 9(1), 1-8. https://doi.org/10.1038/s41598-019-42167-0
Dufrenne, J., Bijwaard, M., Te Giffel, M., Beumer, R., & Notermans, S. (1995). Characteristics of some psychrotrophic Bacillus cereus isolates. International Journal of Food Microbiology, 27(2-3), 175-183.
Duport, C., Jobin, M., & Schmitt, P. (2016). Adaptation in Bacillus cereus: From stress to disease. Frontiers in Microbiology, 7, 1550. https://doi.org/10.3389/fmicb.2016.01550
Duport, C., Thomassin, S., Bourel, G., & Schmitt, P. (2004). Anaerobiosis and low specific growth rates enhance hemolysin BL production by Bacillus cereus F4430/73. Archives of Microbiology, 182(1), 90-95.
Duport, C., Zigha, A., Rosenfeld, E., & Schmitt, P. (2006). Control of enterotoxin gene expression in Bacillus cereus F4430/73 involves the redox-sensitive ResDE signal transduction system. Journal of Bacteriology, 188(18), 6640-6651. https://doi.org/10.1128/JB.00702-06
Ehling-Schulz, M., Frenzel, E., & Gohar, M. (2015). Food-bacteria interplay: Pathometabolism of emetic Bacillus cereus. Frontiers in Microbiology, 6, 704.
Ehling-Schulz, M., Fricker, M., Grallert, H., Rieck, P., Wagner, M., & Scherer, S. (2006). Cereulide synthetase gene cluster from emetic Bacillus cereus: Structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiology, 6(1), 20. https://doi.org/10.1186/1471-2180-6-20
Ehling-Schulz, M., Fricker, M., & Scherer, S. (2004). Bacillus cereus, the causative agent of an emetic type of food-borne illness. Molecular Nutrition & Food Research, 48(7), 479-487. https://doi.org/10.1002/mnfr.200400055
Ehling-Schulz, M., Guinebretiere, M. H., Monthán, A., Berge, O., Fricker, M., & Svensson, B. (2006). Toxin gene profiling of enterotoxic and emetic Bacillus cereus. FEMS Microbiology Letters, 260(2), 232-240. https://doi.org/10.1111/j.1574-6968.2006.00320.x
Ehling-Schulz, M., & Messelhäusser, U. (2013). Bacillus “next generation” diagnostics: Moving from detection toward subtyping and risk-related strain profiling. Frontiers in Microbiology, 4(2), 1-8. https://doi.org/10.3389/fmicb.2013.00032
Ellouze, M., Buss Da Silva, N., Rouzeau-Szynalski, K., Coisne, L., Cantergiani, F., & Baranyi, J. (2021). Modeling Bacillus cereus growth and cereulide formation in cereal-, dairy-, meat-, vegetable-based food and culture medium. Frontiers in Microbiology, 12, 155.
Esbelin, J., Jouanneau, Y., Armengaud, J., & Duport, C. (2008). ApoFnr binds as a monomer to promoters regulating the expression of enterotoxin genes of Bacillus cereus. Journal of Bacteriology, 190(12), 4242-4251. https://doi.org/10.1128/JB.00336-08
Esbelin, J., Jouanneau, Y., & Duport, C. (2012). Bacillus cereus Fnr binds a [4Fe-4S] cluster and forms a ternary complex with ResD and PlcR. BMC Microbiology, 12(1), 1-9. https://doi.org/10.1186/1471-2180-12-125
European Food Safety Authority (EFSA). (2011). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2009. EFSA Journal, 9(3), 2090. https://doi.org/10.2903/j.efsa.2011.2090
European Food Safety Authority (EFSA). (2012). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2010. EFSA Journal, 10(3), 1-442. https://doi.org/10.2903/j.efsa.2012.2597
European Food Safety Authority (EFSA). (2013a). The European Union summary report on trends and sources of zoonoses, trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2011. EFSA Journal, 11(4), 3129. https://doi.org/10.2903/j.efsa.2013.3129
European Food Safety Authority (EFSA). (2013b). Analysis of the baseline survey on the prevalence of Listeria monocytogenes in certain ready-to-eat foods in the EU, 2010-2011 Part A: Listeria monocytogenes prevalence estimates. EFSA Journal, 11(6), 3241. https://doi.org/10.2903/j.efsa.2013.3241
European Food Safety Authority (EFSA). (2014). The European Union summary report on trends and sources of zoonoses, trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012. EFSA Journal, 12(2), 3547. https://doi.org/10.2903/j.efsa.2014.3547
European Food Safety Authority (EFSA). (2015a). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013. EFSA Journal, 18(15), 20449. https://doi.org/10.2903/j.efsa.2015.3991
European Food Safety Authority (EFSA). (2015b). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. EFSA Journal, 13(12), 4329. https://doi.org/10.2903/j.efsa.2015.4329
European Food Safety Authority (EFSA). (2016a). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA Journal, 14(12), e04634. https://doi.org/10.2903/j.efsa.2016.4634
European Food Safety Authority (EFSA). (2016b). Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFSA Journal, 14(7), e04524. https://doi.org/10.2903/j.efsa.2016.4524
European Food Safety Authority (EFSA). (2017). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA Journal, 15(12), e05077. https://doi.org/10.2903/j.efsa.2017.5077
European Food Safety Authority (EFSA). (2018). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA Journal, 16(12), e05500. https://doi.org/10.2903/j.efsa.2018.5500
European Food Safety Authority (EFSA). (2019). The European Union one health 2018 zoonoses report. EFSA Journal, 17(12), e05926. https://doi.org/10.2903/j.efsa.2019.5926
Fagerlund, A., Lindbäck, T., Storset, A. K., Granum, P. E., & Hardy, S. P. (2008). Bacillus cereus Nhe is a pore-forming toxin with structural and functional properties similar to the ClyA (HlyE, SheA) family of haemolysins, able to induce osmotic lysis in epithelia. Microbiology, 154(3), 693-704. https://doi.org/10.1099/mic.0.2007/014134-0
Fagerlund, A., Ween, O., Lund, T., Hardy, S. P., & Granum, P. E. (2004). Genetic and functional analysis of the cytK family of genes in Bacillus cereus. Microbiology, 150(8), 2689-2697. https://doi.org/10.1099/mic.0.26975-0
Fei, P., Xie, Q., Jiang, Y., Feng, H., Chang, Y., Kang, H., Xing, M., & Chen, J. (2021). Genotyping, antimicrobial susceptibility and biofilm formation of Bacillus cereus isolated from powdered food products in China. Foodborne Pathogens and Disease, 18(1), 8-15. https://doi.org/10.1089/fpd.2020.2802
Fei, P., Yuan, X., Zhao, S., Yang, T., Xiang, J., Chen, X., Zhou, L., & Ji, M. (2019). Prevalence and genetic diversity of Bacillus cereus isolated from raw milk and cattle farm environments. Current Microbiology, 76(11), 1355-1360. https://doi.org/10.1007/s00284-019-01741-5
Fischer, C., Hünniger, T., Jarck, J. H., Frohnmeyer, E., Kallinich, C., Haase, I., Hahn, U., & Fischer, M. (2015). Food sensing: Aptamer-based trapping of Bacillus cereus spores with specific detection via real time PCR in milk. Journal of Agricultural and Food Chemistry, 63(36), 8050-8057. https://doi.org/10.1021/acs.jafc.5b03738
Foegeding, P. M., & Berryt, E. D. (1997). Cold temperature growth of clinical and food isolates of Bacillus cereus. Journal of Food Protection, 60(10), 1256-1258. https://doi.org/10.4315/0362-028X-60.10.1256
Fogele, B., Granta, R., Valciņa, O., & Bērziņš, A. (2018). Occurrence and diversity of Bacillus cereus and moulds in spices and herbs. Food Control, 83, 69-74. https://doi.org/10.1016/j.foodcont.2017.05.038
Forghani, F., Kim, J., & Oh, D. (2014). Enterotoxigenic profiling of emetic toxin- and enterotoxin-producing Bacillus cereus, isolated from food, environmental, and clinical samples by multiplex PCR. Journal of Food Science, 79(11), M2288-M2293. https://doi.org/10.1111/1750-3841.12666
Forghani, F., Singh, P., Seo, K. H., & Oh, D. H. (2016). A novel pentaplex real time (RT)- PCR high resolution melt curve assay for simultaneous detection of emetic and enterotoxin producing Bacillus cereus in food. Food Control, 60, 560-568. https://doi.org/10.1016/j.foodcont.2015.08.030
Fox, D., Mathur, A., Xue, Y., Liu, Y., Tan, W. H., Feng, S., Pandey, A., Ngo, C., Hayward, J. A., Atmosukarto, I. I., Price, J. D., Johnson, M. D., Jessberger, N., Robertson, A. A. B., Burgio, G., Tscharke, D. C., Fox, E. M., Leyton, D. L., Kaakoush, N. O., …, & Man, S. M. (2020). Bacillus cereus non-haemolytic enterotoxin activates the NLRP3 inflammasome. Nature Communications, 11(1), 760. https://doi.org/10.1038/s41467-020-14534-3
Frentzel, H., Kraushaar, B., Krause, G., Bodi, D., Wichmann-schauer, H., Appel, B., & Mader, A. (2018). Phylogenetic and toxinogenic characteristics of Bacillus cereus group members isolated from spices and herbs. Food Control, 83, 90-98. https://doi.org/10.1016/j.foodcont.2016.12.022
Frenzel, E., Doll, V., Pauthner, M., Lücking, G., Scherer, S., & Ehling-Schulz, M. (2012). CodY orchestrates the expression of virulence determinants in emetic Bacillus cereus by impacting key regulatory circuits. Molecular Microbiology, 85(1), 67-88. https://doi.org/10.1111/j.1365-2958.2012.08090.x
Gao, T., Ding, Y., Wu, Q., Wang, J., Zhang, J., Yu, S., Yu, P., Liu, C., Kong, L., Feng, Z., Chen, M., Wu, S., Zeng, H., & Wu, H. (2018). Prevalence, virulence genes, antimicrobial susceptibility, and genetic diversity of Bacillus cereus isolated from pasteurized milk in China. Frontiers in Microbiology, 9, 533. https://doi.org/10.3389/fmicb.2018.00533
García-Calvo, J., Ibeas, S., Antón-García, E. C., Torroba, T., González-Aguilar, G., Antunes, W., González-Lavado, E., & Fanarraga, M. L. (2017). Potassium-ion-selective fluorescent sensors to detect cereulide, the emetic toxin of B. cereus, in food samples and HeLa cells. ChemistryOpen, 6(4), 562-570. https://doi.org/10.1002/open.201700057
Ghelardi, E., Celandroni, F., Salvetti, S., Beecher, D. J., Gominet, M., Lereclus, D., Wong, A. C. L., & Senesi, S. (2002). Requirement of flhA for swarming differentiation, flagellin export, and secretion of virulence-associated proteins in Bacillus thuringiensis. Journal of Bacteriology, 184(23), 6424-6433. https://doi.org/10.1128/JB.184.23.6424-6433.2002
Ghosh, S., Korza, G., Maciejewski, M., & Setlow, P. (2015). Analysis of metabolism in dormant spores of Bacillus species by 31P nuclear magnetic resonance analysis of low-molecular-weight compounds. Journal of Bacteriology, 197(5), 992-1001. https://doi.org/10.1128/JB.02520-14
Glasset, B., Herbin, S., Guillier, L., Cadel-Six, S., Vignaud, M., Grout, J., Pairaud, S., Michel, V., Hennekinne, J.-A., Ramarao, N., & Brisabois, A. (2016). Bacillus cereus-induced food-borne outbreaks in France, 2007 to 2014: Epidemiology and genetic characterisation. Eurosurveillance, 21(48), 30413. https://doi.org/10.2807/1560-7917.ES.2016.21.48.30413
Goel, V., Cheema, S. K., Agellon, L. B., Ooraikul, B., McBurney, M. I., & Basu, T. K. (1998). In vitro binding of bile salt to rhubarb stalk powder. Nutrition Research, 18(5), 893-903. https://doi.org/10.1016/S0271-5317(98)00074-8
Gohar, M., Faegri, K., Perchat, S., Ravnum, S., Økstad, O. A., Gominet, M., Kolstø, A. B., & Lereclus, D. (2008). The PlcR virulence regulon of Bacillus cereus. PLoS ONE, 3(7), e2793. https://doi.org/10.1371/journal.pone.0002793
Gohar, M., Økstad, O. A., Gilois, N., Sanchis, V., Kolst⊘, A. B., & Lereclus, D. (2002). Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics, 2(6), 784-791. https://doi.org/10.1002/1615-9861(200206)2:6784::AID-PROT7843.0.CO2-R
Granum, P. E. (1990). Clostridium perfringens toxins involved in food poisoning. International Journal of Food Microbiology, 10(2), 101-111.
Granum, P. E., & Lund, T. (1997). Bacillus cereus and its food poisoning toxins. FEMS Microbiology Letters, 157(2), 223-228. https://doi.org/10.1016/S0378-1097(97)00438-2
Granum, P. E., O'Sullivan, K., & Lund, T. (1999). The sequence of the non-haemolytic enterotoxin operon from Bacillus cereus. FEMS Microbiology Letters, 177(2), 225-229. https://doi.org/10.1016/S0378-1097(99)00312-2
Griffith, O. H., & Ryan, M. (1999). Bacterial phosphatidylinositol-specific phospholipase C: Structure, function, and interaction with lipids. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1441(2-3), 237-254. https://doi.org/10.1016/S1388-1981(99)00153-5
Grutsch, A. A., Nimmer, P. S., Pittsley, R. H., Kornilow, K. G., & McKillip, J. L. (2018). Molecular pathogenesis of Bacillus spp., with emphasis on the dairy industry. Fine Focus, 4(2), 203-222. https://doi.org/10.33043/FF.4.2.203-222
Guérin, A., Rønning, H. T., Dargaignaratz, C., Clavel, T., Broussolle, V., Mahillon, J., Granum, P. E., & Nguyen-The, C. (2017). Cereulide production by Bacillus weihenstephanensis strains during growth at different pH values and temperatures. Food Microbiology, 65, 130-135. https://doi.org/10.1016/j.fm.2017.02.006
Guillemet, E., Tran, S. L., Cadot, C., Rognan, D., Lereclus, D., & Ramarao, N. (2013). Glucose 6P binds and activates HlyIIR to repress Bacillus cereus haemolysin hlyII gene expression. PLoS ONE, 8(2), e55085. https://doi.org/10.1371/journal.pone.0055085
Guinebretière, M. H., Auger, S., Galleron, N., Contzen, M., De Sarrau, B., De Buyser, M. L., Lamberet, G., Fagerlund, A., Granum, P. E., Lereclus, D., De Vos, P., Nguyen-The, C., & Sorokin, A. (2013). Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus group occasionally associated with food poisoning. International Journal of Systematic and Evolutionary Microbiology, 63(1), 31-40. https://doi.org/10.1099/ijs.0.030627-0
Guinebretière, M. H., Fagerlund, A., Granum, P. E., & Nguyen-The, C. (2006). Rapid discrimination of cytK-1 and cytK-2 genes in Bacillus cereus strains bya novel duplex PCR system. FEMS Microbiology Letters, 259(1), 74-80. https://doi.org/10.1111/j.1574-6968.2006.00247.x
Guinebretière, M. H., Thompson, F. L., Sorokin, A., Normand, P., Dawyndt, P., Ehling-Schulz, M., Svensson, B., Sanchis, V., Nguyen-The, C., Heyndrickx, M., & De Vos, P. (2008). Ecological diversification in the Bacillus cereus group. Environmental Microbiology, 10(4), 851-865. https://doi.org/10.1111/j.1462-2920.2007.01495.x
Guinebretière, M. H., Velge, P., Couvert, O., Carlin, F., Debuyser, M. L., & Nguyen-The, C. (2010). Ability of Bacillus cereus group strains to cause food poisoning varies according to phylogenetic affiliation (groups I to VII) rather than species affiliation. Journal of Clinical Microbiology, 48(9), 3388-3391. https://doi.org/10.1128/JCM.00921-10
Guo J., Wang Y. Q., Yang G., Chen Y., Zhou S., Zhao Y., Zhuang L. (2016). Bacillus nitroreducens sp. nov., a humus-reducing bacterium isolated from a compost. Archives of Microbiology, 198(4), 347-352. https://doi.org/10.1007/s00203-016-1193-9
Hariram, U., & Labbe, R. (2015). Spore prevalence and toxigenicity of Bacillus cereus and Bacillus thuringiensis isolates from US retail spices. Journal of Food Protection, 78(3), 590-596. https://doi.org/10.4315/0362-028X.JFP-14-380
Haydar, A., Tran, S. L., Guillemet, E., Darrigo, C., Perchat, S., Lereclus, D., Coquet, L., Jouenne, T., & Ramarao, N. (2018). InhA1-mediated cleavage of the metalloprotease NprA allows Bacillus cereus to escape from macrophages. Frontiers in Microbiology, 9, 1063. https://doi.org/10.3389/fmicb.2018.01063
Hayrapetyan, H., Siezen, R., Abee, T., & Nierop Groot, M. (2016). Comparative genomics of iron-transporting systems in Bacillus cereus strains and impact of iron sources on growth and biofilm formation. Frontiers in Microbiology, 7, 842. https://doi.org/10.3389/fmicb.2016.00842
Heini, N., Stephan, R., Ehling-Schulz, M., & Johler, S. (2018). Characterization of Bacillus cereus group isolates from powdered food products. International Journal of Food Microbiology, 283(1), 59-64. https://doi.org/10.1016/j.ijfoodmicro.2018.06.019
Helgason E., Økstad O. A., Caugant D. A., Johansen H. A., Fouet A., Mock M., Hegna I., Kolstø A. (2000). Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis-one species on the basis of genetic evidence. Applied and Environmental Microbiology, 66, (6), 2627-2630. https://doi.org/10.1128/aem.66.6.2627-2630.2000
Hofmann, A. F., & Eckmann, L. (2006). How bile acids confer gut mucosal protection against bacteria. Proceedings of the National Academy of Sciences, 103(12), 4333-4334. https://doi.org/10.1073/pnas.0600780103
Hoornstra, D., Andersson, M. A., Teplova, V. V., Mikkola, R., Uotila, L. M., Andersson, L. C., Roivainen, M., Gahmberg, C. G., & Salkinoja-Salonen, M. S. (2013). Potato crop as a source of emetic Bacillus cereus and cereulide-induced mammalian cell toxicity. Applied and Environmental Microbiology, 79(12), 3534-3543. https://doi.org/10.1128/AEM.00201-13
Horwood, P. F., Burgess, G. W., & Jane Oakey, H. (2004). Evidence for non-ribosomal peptide synthetase production of cereulide (the emetic toxin) in Bacillus cereus. FEMS Microbiology Letters, 236(2), 319-324. https://doi.org/10.1016/j.femsle.2004.06.004
Hoton, F. M., Fornelos, N., N'guessan, E., Hu, X., Swiecicka, I., Dierick, K., Jääskeläinen, E., Salkinoja-Salonen, M., & Mahillon, J. (2009). Family portrait of Bacillus cereus and Bacillus weihenstephanensis cereulide-producing strains. Environmental Microbiology Reports, 1(3), 177-183. https://doi.org/10.1111/j.1758-2229.2009.00028.x
Hsieh, Y. M., Sheu, S. J., Chen, Y. L., & Tsen, H. Y. (1999). Enterotoxigenic profiles and polymerase chain reaction detection of Bacillus cereus group cells and B. cereus strains from foods and food-borne outbreaks. Journal of Applied Microbiology, 87(4), 481-490. https://doi.org/10.1046/j.1365-2672.1999.00837.x
Hughes, S., Bartholomew, B., Hardy, J. C., & Kramer, J. M. (1988). Potential application of a HEp-2 cell assay in the investigation of Bacillus cereus emetic-syndrome food poisoning. FEMS Microbiology Letters, 52(1-2), 7-11.
Hwang J., Park J. (2015). Characteristics of enterotoxin distribution, hemolysis, lecithinase, and starch hydrolysis of Bacillus cereus isolated from infant formulas and ready-to-eat foods. Journal of Dairy Science, 98(3), 1652-1660. https://doi.org/10.3168/jds.2014-9042
Ichikawa, K., Gakumazawa, M., Inaba, A., Shiga, K., Takeshita, S., Mori, M., & Kikuchi, N. (2010). Acute encephalopathy of Bacillus cereus mimicking Reye syndrome. Brain and Development, 32(8), 688-690. https://doi.org/10.1016/j.braindev.2009.09.004
in't Veld, P. H., Ritmeester, W. S., Delfgou-van Asch, E. H. M., Dufrenne, J. B., Wernars, K., Smit, E., & van Leusden, F. M. (2001). Detection of genes encoding for enterotoxins and determination of the production of enterotoxins by HBL blood plates and immunoassays of psychrotrophic strains of Bacillus cereus isolated from pasteurised milk. International Journal of Food Microbiology, 64(1-2), 63-70. https://doi.org/10.1016/S0168-1605(00)00443-8
in't Veld, P. H., van der Laak, L. F. J., van Zon, M., & Biesta-Peters, E. G. (2019). Elaboration and validation of the method for the quantification of the emetic toxin of Bacillus cereus as described in EN-ISO 18465 - Microbiology of the food chain - Quantitative determination of emetic toxin (cereulide) using LC-MS/MS. International Journal of Food Microbiology, 288, 91-96. https://doi.org/10.1016/j.ijfoodmicro.2018.03.021
ISO. (2004). ISO 7932:2004. Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of presumptive Bacillus cereus - colony-count technique at 30 degrees. https://www.iso.org/standard/38219.html
Jääskeläinen, E. L., Häggblom, M. M., Andersson, M. A., & Salkinoja-Salonen, M. S. (2004). Atmospheric oxygen and other conditions affecting the production of cereulide by Bacillus cereus in food. International Journal of Food Microbiology, 96(1), 75-83. https://doi.org/10.1016/j.ijfoodmicro.2004.03.011
Jääskeläinen, E. L., Häggblom, M. M., Andersson, M. A., Vanne, L., & Salkinoja-Salonen, M. S. (2003). Potential of Bacillus cereus for producing an emetic toxin, cereulide, in bakery products: Quantitative analysis by chemical and biological methods. Journal of Food Protection, 66(6), 1047-1054. https://doi.org/10.4315/0362-028X-66.6.1047
Jääskeläinen, E. L., Teplova, V., Andersson, M. A., Andersson, L. C., Tammela, P., Andersson, M. C., Pirhonen, T. I., Saris, N. E., Vuorela, P., & Salkinoja-Salonen, M. S. (2003). In vitro assay for human toxicity of cereulide, the emetic mitochondrial toxin produced by food poisoning Bacillus cereus. Toxicology in Vitro, 17(5-6), 737-744. https://doi.org/10.1016/S0887-2333(03)00096-1
Jeßberger, N., Dietrich, R., Bock, S., Didier, A., & Märtlbauer, E. (2014). Bacillus cereus enterotoxins act as major virulence factors and exhibit distinct cytotoxicity to different human cell lines. Toxicon, 77, 49-57. https://doi.org/10.1016/j.toxicon.2013.10.028
Jessberger, N., Dietrich, R., Mohr, A. K., Da Riol, C., & Märtlbauer, E. (2019). Porcine gastric mucin triggers toxin production of enteropathogenicBacillus cereus. Infection and Immunity, 87(4), e00765-18. https://doi.org/10.1128/IAI.00765-18
Jessberger, N., Dietrich, R., Schwemmer, S., Tausch, F., Schwenk, V., Didier, A., & Märtlbauer, E. (2019). Binding to the target cell surface is the crucial step in pore formation of hemolysin BL from Bacillus cereus. Toxins, 11(5), 281. https://doi.org/10.3390/toxins11050281
Jessberger, N., Kranzler, M., Da Riol, C., Schwenk, V., Buchacher, T., Dietrich, R., Ehling-Schulz, M., & Märtlbauer, E. (2019). Assessing the toxic potential of enteropathogenic Bacillus cereus. Food Microbiology, 84, 103276. https://doi.org/10.1016/j.fm.2019.103276
Jeßberger, N., Rademacher, C., Krey, V. M., Dietrich, R., Mohr, A. K., Böhm, M. E., Scherer, S., Ehling-Schulzm, M., & Märtlbauer, E. (2017). Simulating intestinal growth conditions enhances toxin production of enteropathogenic Bacillus cereus. Frontiers in Microbiology, 8, 627. https://doi.org/10.3389/fmicb.2017.00627
Jobin, M. P., Clavel, T., Carlin, F., & Schmitt, P. (2002). Acid tolerance response is low-pH and late-stationary growth phase inducible in Bacillus cereus TZ415. International Journal of Food Microbiology, 79(1-2), 65-73. https://doi.org/10.1016/S0168-1605(02)00180-0
Jouzani, G. S., Valijanian, E., & Sharafi, R. (2017). Bacillus thuringiensis: A successful insecticide with new environmental features and tidings. Applied Microbiology and Biotechnology, 101(7), 2691-2711. https://doi.org/10.1007/s00253-017-8175-y
Jung M., Paek W. K., Park I., Han J., Sin Y., Paek J., Rhee M., Kim H., Song H., Chang Y. (2010). Bacillus gaemokensis sp. nov., isolated from foreshore tidal flat sediment from the Yellow sea. The Journal of Microbiology, 48(6), 867-871. https://doi.org/10.1007/s12275-011-0548-9
Jung M., Kim J., Paek W. K., Lim J., Lee H., Kim P., Ma J., Kim W., Chang Y. (2011). Bacillus manliponensis sp. nov., a new member of the Bacillus cereus group isolated from foreshore tidal flat sediment. The Journal of Microbiology, 49(6), 1027-1032. https://doi.org/10.1007/s12275-011-1049-6
Kilcullen, K., Teunis, A., Popova, T. G., & Popov, S. G. (2016). Cytotoxic potential of Bacillus cereus strains ATCC 11778 and 14579 against human lung epithelial cells under microaerobic growth conditions. Frontiers in Microbiology, 7(2), 1-12. https://doi.org/10.3389/fmicb.2016.00069
Kim, B., Bang, J., Kim, H., Kim, Y., Kim, B., Beuchat, L. R., & Ryu, J. (2014). Bacillus cereus and Bacillus thuringiensis spores in Korean rice : Prevalence and toxin production as affected by production area and degree of milling. Food Microbiology, 42, 89-94. https://doi.org/10.1016/j.fm.2014.02.021
Kim, J. B., Kim, J. M., Kim, S. Y., Kim, J. H., Park, Y. B., Choi, N. J., & Oh, D. H. (2010). Comparison of enterotoxin production and phenotypic characteristics between emetic and enterotoxic Bacillus cereus. Journal of Food Protection, 73(7), 1219-1224.
Kim, J. M., Forghani, F., Kim, J. B., Park, Y. B., Park, M. S., Wang, J., Park, J. H., & Oh, D. H. (2012). Improved multiplex PCR assay for simultaneous detection of Bacillus cereus emetic and enterotoxic strains. Food Science and Biotechnology, 21(5), 1439-1444. https://doi.org/10.1007/s10068-012-0189-8
Kim, S. K. I., Kim, K., Jang, S. S. I. K., Shin, E. U. N. M. I., Kim, M., Oh, S., & Ryu, S. (2009). Prevalence and toxigenic profiles of Bacillus cereus isolated from dried red peppers, rice, and sunsik in Korea. Journal of Food Protection, 72(3), 578-582. https://doi.org/10.4315/0362-028X-72.3.578
Kong, M., Sim, J., Kang, T., Nguyen, H. H., Park, H. K., Chung, B. H., & Ryu, S. (2015). A novel and highly specific phage endolysin cell wall binding domain for detection of Bacillus cereus. European Biophysics Journal, 44(6), 437-446. https://doi.org/10.1007/s00249-015-1044-7
Kranzler, M., Stollewerk, K., Rouzeau-Szynalski, K., Blayo, L., Sulyok, M., & Ehling-Schulz, M. (2016). Temperature exerts control of Bacillus cereus emetic toxin production on post-transcriptional levels. Frontiers in Microbiology, 7, 1640. https://doi.org/10.3389/fmicb.2016.01640
Krause, N., Moravek, M., Dietrich, R., Wehrle, E., Slaghuis, J., & Märtlbauer, E. (2010). Performance characteristics of the Duopath® Cereus Enterotoxins assay for rapid detection of enterotoxinogenic Bacillus cereus strains. International Journal of Food Microbiology, 144(2), 322-326. https://doi.org/10.1016/j.ijfoodmicro.2010.10.008
Kristoffersen, S. M., Ravnum, S., Tourasse, N. J., Økstad, O. A., Kolstø, A. B., & Davies, W. (2007). Low concentrations of bile salts induce stress responses and reduce motility in Bacillus cereus ATCC 14570. Journal of Bacteriology, 189(14), 5302-5313. https://doi.org/10.1128/JB.00239-07
Rahmati, T., & Labbe, R. (2008). Levels and toxigenicity of Bacillus cereus and Clostridium perfringens from retail seafood. Journal of Food Protection, 71(6), 1178-1185. https://doi.org/10.4315/0362-028X-71.6.1178
Lan, X., Wang, J., Zheng, N., Zhao, S., Li, S., & Li, F. (2018). Prevalence and risk factors for Bacillus cereus in raw milk in Inner Mongolia, Northern China. International Journal of Dairy Technology, 71(1), 269-273. https://doi.org/10.1111/1471-0307.12416
Laouami, S., Messaoudi, K., Alberto, F., Clavel, T., & Duport, C. (2011). Lactate dehydrogenase A promotes communication between carbohydrate catabolism and virulence in Bacillus cereus. Journal of Bacteriology, 193(7), 1757-1766. https://doi.org/10.1128/JB.00024-11
Lechner S., Mayr R., Francis K. P., Pruss B. M., Kaplan T., Wiesser-Gunkel E., Stewart G. S. A. B., Scherer S. (1998). Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. International Journal of Systematic Bacteriology, 48(4), 1373-1382. https://doi.org/10.1099/00207713-48-4-1373
Lereclus, D., Agaisse, H., Gominet, M., Salamitou, S., & Sanchis, V. (1996). Identification of a Bacillus thuringiensis gene that positively regulates transcription of the phosphatidylinositol-specific phospholipase C gene at the onset of the stationary phase. Journal of Bacteriology, 178(10), 2749-2756. https://doi.org/10.1128/jb.178.10.2749-2756.1996
Li, F., Li, F., Yang, G., Aguilar, Z. P., Lai, W., & Xu, H. (2018). Asymmetric polymerase chain assay combined with propidium monoazide treatment and unmodified gold nanoparticles for colorimetric detection of viable emetic Bacillus cereus in milk. Sensors and Actuators, B: Chemical, 255, 1455-1461. https://doi.org/10.1016/j.snb.2017.08.154
Lindbäck, T., Fagerlund, A., Rødland, M. S., & Granum, P. E. (2004). Characterization of the Bacillus cereus Nhe enterotoxin. Microbiology, 150(12), 3959-3967. https://doi.org/10.1099/mic.0.27359-0
Lindbäck, T., Hardy, S. P., Dietrich, R., Sødring, M., Didier, A., Moravek, M., Fagerlund, A., Bock, S., Nielsen, C., Casteel, M., Granum, P. E., & Märtlbauer, E. (2010). Cytotoxicity of the Bacillus cereus Nhe enterotoxin requires specific binding order of its three exoprotein components. Infection and Immunity, 78(9), 3813-3821. https://doi.org/10.1128/IAI.00247-10
Liu Y., Du J., Lai Q., Zeng R., Ye D., Xu J., Shao Z. (2017). Proposal of nine novel species of the Bacillus cereus group. International Journal of Systematic and Evolutionary Microbiology, 67(8), 2499-2508. https://doi.org/10.1099/ijsem.0.001821
Liu, C., Yu, P., Yu, S., Wang, J., Guo, H., Zhang, Y., Zhang, J., Liao, X., Li, C., Wu, S., Gu, Q., Zeng, H., Zhang, Y., Wei, X., Zhang, J., Wu, Q., & Ding, Y. (2020). Assessment and molecular characterization of Bacillus cereus isolated from edible fungi in China. BMC Microbiology, 20(1), 1-10. https://doi.org/10.1186/s12866-020-01996-0
Liu J., Zuo Z., Sastalla I., Liu C., Jang J. Y., Sekine Y., Li Y., Pirooznia M., Leppla S., Finkel T., Liu S. (2020). Sequential CRISPR-Based Screens Identify LITAF and CDIP1 as the Bacillus cereus Hemolysin BL Toxin Host Receptors. Cell Host & Microbe, 28(3), 402-410.e5. https://doi.org/10.1016/j.chom.2020.05.012
Liu, X. Y., Hu, Q., Xu, F., Ding, S. Y., & Zhu, K. (2020). Characterization of Bacillus cereus in dairy products in China. Toxins, 12(7), 454. https://doi.org/10.3390/toxins12070454
Luecking, G., Dommel, M. K., Scherer, S., Fouet, A., & Ehling-Schulz, M. (2009). Cereulide synthesis in emetic Bacillus cereus is controlled by the transition state regulator AbrB, but not by the virulence regulator PlcR. Microbiology, 155(3), 922-931. https://doi.org/10.1099/mic.0.024125-0
Lund, T., De Buyser, M. L., & Granum, P. E. (2000). A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Molecular Microbiology, 38(2), 254-261. https://doi.org/10.1046/j.1365-2958.2000.02147.x
Lund, T., & Granum, P. E. (1997). Comparison of biological effect of the two different enterotoxin complexes isolated from three different strains of Bacillus cereus. Microbiology, 143(10), 3329-3336. https://doi.org/10.1099/00221287-143-10-3329
Luu-Thi, H., Khadka, D. B., & Michiels, C. W. (2014). Thermal inactivation parameters of spores from different phylogenetic groups of Bacillus cereus. International Journal of Food Microbiology, 189, 183-188. https://doi.org/10.1016/j.ijfoodmicro.2014.07.027
Ma, H., Li, J., Xi, X., Xu, H., Wuri, L., Bian, Y., Yu, Z., Ren, M., Duo, L., Sun, Y., Sun, Z., Sun, T., & Menghe, B. (2018). Evaluation of bacterial contamination in goat milk powder using PacBio single molecule real-time sequencing and droplet digital PCR. Journal of Food Protection, 81(11), 1791-1799. https://doi.org/10.4315/0362-028X.JFP-17-535
Magarvey, N. A., Ehling-Schulz, M., & Walsh, C. T. (2006). Characterization of the cereulide NRPS α-hydroxy acid specifying modules: Activation of α-keto acids and chiral reduction on the assembly line. Journal of the American Chemical Society, 128(33), 10698-10699. https://doi.org/10.1021/ja0640187
Mahler, H., Pasi, A., Kramer, J. M., Schulte, P., Scoging, A. C., Bär, W., & Krähenbühl, S. (1997). Fulminant liver failure in association with the emetic toxin of Bacillus cereus. New England Journal of Medicine, 336(16), 1142-1148. https://doi.org/10.1056/NEJM199704173361604
Makarasen, A., Nishikawa, T., & Isobe, M. (2009). Synthesis of four lysine-linked cereulide analogues showing ionophoric activity towards potassium cations as lead compounds for emetic toxin-detection by immunoassays. Synthesis, (13), 2184-2204. https://doi.org/10.1055/s-0029-1216837
Marteyn, B., Scorza, F. B., Sansonetti, P. J., & Tang, C. (2011). Breathing life into pathogens: The influence of oxygen on bacterial virulence and host responses in the gastrointestinal tract. Cellular Microbiology, 13(2), 171-176. https://doi.org/10.1111/j.1462-5822.2010.01549.x
Marxen, S., Stark, T. D., Frenzel, E., Rütschle, A., Lücking, G., Pürstinger, G., Pohl, E. E., Scherer, S., Ehling-Schulz, M., & Hofmann, T. (2015). Chemodiversity of cereulide, the emetic toxin of Bacillus cereus. Analytical and Bioanalytical Chemistry, 407(9), 2439-2453. https://doi.org/10.1007/s00216-015-8511-y
Marxen, S., Stark, T. D., Rütschle, A., Lücking, G., Frenzel, E., Scherer, S., Ehling-Schulz, M., & Hofmann, T. (2015). Depsipeptide intermediates interrogate proposed biosynthesis of cereulide, the emetic toxin of Bacillus cereus. Scientific Reports, 5, 10637. https://doi.org/10.1038/srep10637
Mathur, A., Feng, S., Hayward, J. A., Ngo, C., Fox, D., Atmosukarto, I. I., Price, J. D., Schauer, K., Märtlbauer, E., Robertson, A. A. B., Burgio, G., Fox, E. M., Leppla, S. H., Kaakoush, N. O., & Man, S. M. (2019). A multicomponent toxin from Bacillus cereus incites inflammation and shapes host outcome via the NLRP3 inflammasome. Nature Microbiology, 4(2), 362-374. https://doi.org/10.1038/s41564-018-0318-0
May, F. J., Polkinghorne, B. G., & Fearnley, E. J. (2016). Epidemiology of bacterial toxin-mediated foodborne gastroenteritis outbreaks in Australia, 2001 to 2013. Communicable Diseases Intelligence, 40(4), E460-E469. https://www1.health.gov.au/internet/main/publishing.nsf/Content/cda-cdi4004-pdf-cnt.htm/$FILE/cdi4004c.pdf
Mazas, M., Lopez, M., Gonzalez, I., Bernardo, A., & Martin, R. (1997). Effects of sporulation pH on the heat resistance and the sporulation of Bacillus cereus. Letters in Applied Microbiology, 25(5), 331-334. https://doi.org/10.1046/j.1472-765X.1997.00240.x
Medrano, M., Pérez, P. F., & Abraham, A. G. (2008). Kefiran antagonizes cytopathic effects of Bacillus cereus extracellular factors. International Journal of Food Microbiology, 122(1-2), 1-7. https://doi.org/10.1016/j.ijfoodmicro.2007.11.046
Merck. (n.d.). Duopath Cereus Enterotoxins. https://www.sigmaaldrich.com/catalog/product/mm/104146?lang=en®ion=BE&gclid=Cj0KCQjw-LOEBhDCARIsABrC0Tl-Pn7fZ16jhWUSREnx9ZdK7fJgg05qF3b9UfUm7amDbNcHkB4RVSEaAv6CEALw_wcB
Merritt, M. E., & Donaldson, J. R. (2009). Effect of bile salts on the DNA and membrane integrity of enteric bacteria. Journal of Medical Microbiology, 58(12), 1533-1541. https://doi.org/10.1099/jmm.0.014092-0
Messelhäusser, U., Frenzel, E., Blöchinger, C., Zucker, R., Kämpf, P., & Ehling-Schulz, M. (2014). Emetic Bacillus cereus are more volatile than thought: Recent foodborne outbreaks and prevalence studies in Bavaria (2007-2013). BioMed Research International, 2014, 465603. https://doi.org/10.1155/2014/465603
Messelhäusser, U., Kämpf, P., Fricker, M., Ehling-Schulz, M., Zucker, R., Wagner, B., Busch, U., & Höller, C. (2010). Prevalence of emetic Bacillus cereus in different ice creams in Bavaria. Journal of Food Protection, 73(2), 395-399. https://doi.org/10.4315/0362-028X-73.2.395
Mgbakogu, R. A., & Eledo, B. O. (2015). Evaluation of Bacillus cereus contamination of local vegetables in Obosi, Nigeria. Journal of Biology, Agriculture and Healthcare, 5(15), 62-66.
Mikkola, R., Saris, N. E. L., Grigoriev, P. A., Andersson, M. A., & Salkinoja-Salonen, M. S. (1999). Ionophoretic properties and mitochondrial effects of cereulide. The emetic toxin of B. cereus. European Journal of Biochemistry, 263(1), 112-117. https://doi.org/10.1046/j.1432-1327.1999.00476.x
Miller, R. A., Jian, J., Beno, S. M., Wiedmann, M., & Kovac, J. (2018). Intraclade variability in toxin production and cytotoxicity of Bacillus cereus group type strains and dairy-associated isolates. Applied and Environmental Microbiology, 84(6), 1-15. https://doi.org/10.1128/AEM.02479-17
Miller R. A., Beno S. M., Kent D. J., Carroll L. M., Martin N. H., Boor K. J., Kovac J. (2016). Bacillus wiedmannii sp. nov., a psychrotolerant and cytotoxic Bacillus cereus group species isolated from dairy foods and dairy environments. International Journal of Systematic and Evolutionary Microbiology, 66(11), 4744-4753. https://doi.org/10.1099/ijsem.0.001421
Milojevic, L., Velebit, B., Djordjevic, V., Jankovic, V., Lakicevic, B., Bajcic, A., & Betic, N. (2019). Screening of Bacillus cereus presence in minced meat and meat products originating from Serbian retail facilities. IOP Conference Series: Earth and Environmental Science, 333(1), 012079. https://doi.org/10.1088/1755-1315/333/1/012079
Minnaard, J., Lievin-Le Moal, V., Coconnier, M. H., Servin, A. L., & Pérez, P. F. (2004). Disassembly of F-actin cytoskeleton after interaction of Bacillus cereus with fully differentiated human intestinal Caco-2 cells. Infection and Immunity, 72(6), 3106-3112. https://doi.org/10.1128/IAI.72.5.3106
Moir, A., Corfe, B. M., & Behravan, J. (2002). Spore germination. Cellular and Molecular Life Sciences, 59(3), 403-409. https://doi.org/10.1007/s00018-002-8432-8
Mols, M., & Abee, T. (2011). Primary and secondary oxidative stress in Bacillus. Environmental Microbiology, 13(6), 1387-1394. https://doi.org/10.1111/j.1462-2920.2011.02433.x
Mols, M., van Kranenburg, R., van Melis, C. C. J., Moezelaar, R., & Abee, T. (2010). Analysis of acid-stressed Bacillus cereus reveals a major oxidative response and inactivation-associated radical formation. Environmental Microbiology, 12(4), 873-885. https://doi.org/10.1111/j.1462-2920.2009.02132.x
Moravek, M., Dietrich, R., Buerk, C., Broussolle, V., Guinebretière, M. H., Granum, P. E., Nguyen-The, C., & Märtlbauer, E. (2006). Determination of the toxic potential of Bacillus cereus isolates by quantitative enterotoxin analyses. FEMS Microbiology Letters, 257(2), 293-298. https://doi.org/10.1111/j.1574-6968.2006.00185.x
Moravek, M., Wegscheider, M., Schulz, A., Dietrich, R., Bürk, C., & Märtlbauer, E. (2004). Colony immunoblot assay for the detection of hemolysin BL enterotoxin producing Bacillus cereus. FEMS Microbiology Letters, 238(1), 107-113. https://doi.org/10.1016/j.femsle.2004.07.024
Murakami, T., Hiraoka, K., Mikami, T., Matsumoto, T., Katagiri, S., & Suzuki, M. (1991). Detection of Bacillus cereus flagellar antigen by enzyme-linked immunosorbent assay (ELISA). Microbiology and Immunology, 35(3), 223-234. https://doi.org/10.1111/j.1348-0421.1991.tb01551.x
Naranjo, M., Denayer, S., Botteldoorn, N., Delbrassinne, L., Veys, J., Waegenaere, J., Sirtaine, N., Driesen, R. B., Sipido, K. R., Mahillon, J., & Dierick, K. (2011). Sudden death of a young adult associated with Bacillus cereus food poisoning. Journal of Clinical Microbiology, 49(12), 4379-4381. https://doi.org/10.1128/JCM.05129-11
Ngamwongsatit, P., Banada, P. P., Panbangred, W., & Bhunia, A. K. (2008). WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line. Journal of Microbiological Methods, 73(3), 211-215. https://doi.org/10.1016/j.mimet.2008.03.002
N'guessan, E., Bakayoko, S., Cisse, M., Dalie, W., & Sindic, M. (2019). Prevalence of Bacillus cereus and emetic strains detection from Ivory Coast local flours. Agronomie Africaine, 8(1), 151-159.
Nguyen Thi Minh, H., Durand, A., Loison, P., Perrier-Cornet, J. M., & Gervais, P. (2011). Effect of sporulation conditions on the resistance of Bacillus subtilis spores to heat and high pressure. Applied Microbiology and Biotechnology, 90(4), 1409-1417. https://doi.org/10.1007/s00253-011-3183-9
Nguyen, A. T., & Tallent, S. M. (2019). Screening food for Bacillus cereus toxins using whole genome sequencing. Food Microbiology, 78, 164-170. https://doi.org/10.1016/j.fm.2018.10.008
Notermans, S., & Batt, C. A. (1998). A risk assessment approach for food-borne Bacillus cereus and its toxins. Journal of Applied Microbiology Symposium Supplement, 84(27), 51-61. https://doi.org/10.1046/j.1365-2672.1998.0840s151s.x
Oda, M., Hashimoto, M., Takahashi, M., Ohmae, Y., Seike, S., Kato, R., Fujita, A., Tsuge, H., Nagahama, M., Ochi, S., Sasahara, T., Hayashi, S., Hirai, Y., & Sakurai, J. (2012). Role of sphingomyelinase in infectious diseases caused by Bacillus cereus. PLoS ONE, 7(6), e38054. https://doi.org/10.1371/journal.pone.0038054
Omer, H., Brunet, J. L., Armengaud, J., & Duport, C. (2015). Proteomics identifies Bacillus cereus EntD as a pivotal protein for the production of numerous virulence factors. Frontiers in Microbiology, 6, 1004. https://doi.org/10.3389/fmicb.2015.01004
Owusu-Kwarteng, J., Wuni, A., Akabanda, F., Tano-Debrah, K., & Jespersen, L. (2017). Prevalence, virulence factor genes and antibiotic resistance of Bacillus cereus sensu lato isolated from dairy farms and traditional dairy products. BMC Microbiology, 17(1), 1-8. https://doi.org/10.1186/s12866-017-0975-9
Paananen, A., Mikkola, R., Sareneva, T., Matikainen, S., Hess, M., Andersson, M., Julkunen, I., Salkinoja-Salonen, M. S., & Timonen, T. (2002). Inhibition of human natural killer cell activity by cereulide, an emetic toxin from Bacillus cereus. Clinical & Experimental Immunology, 129(3), 420-428. https://doi.org/10.1046/j.1365-2249.2002.01898.x
Pal, S., Ying, W., Alocilja, E. C., & Downes, F. P. (2008). Sensitivity and specificity performance of a direct-charge transfer biosensor for detecting Bacillus cereus in selected food matrices. Biosystems Engineering, 99(4), 461-468. https://doi.org/10.1016/j.biosystemseng.2007.11.015
Park, C., Kong, M., Lee, J. H., Ryu, S., & Park, S. (2018). Detection of Bacillus cereus using bioluminescence assay with cell wall-binding domain conjugated magnetic nanoparticles. BioChip Journal, 12(4), 287-293. https://doi.org/10.1007/s13206-018-2408-8
Park, K. M., Jeong, M., Park, K. J., & Koo, M. (2018). Prevalence, enterotoxin genes, and antibiotic resistance of Bacillus cereus isolated from raw vegetables in Korea. Journal of Food Protection, 81(10), 1590-1597. https://doi.org/10.4315/0362-028X.JFP-18-205
Park, S. Y., Choi, J. W., Yeon, J. H., Lee, M. J., Oh, D. H., Hong, C. H., Bahk, G.-J., Woo, G.-J., Park, J.-S., & Ha, S. D. (2005). Assessment of contamination level of foodborne pathogens in the main ingredients of kimbab during the preparing process. Korean Journal of Food Science and Technology, 37(1), 122-128.
Perera, M. L., & Ranasinghe, G. R. (2012). Prevalence of Bacillus cereus and associated risk factors in Chinese-style fried rice available in the city of Colombo, Sri Lanka. Foodborne Pathogens and Disease, 9(2), 125-131. https://doi.org/10.1089/fpd.2011.0969
Periago, P. M., van Schaik, W., Abee, T., & Wouters, J. A. (2002). Identification of proteins involved in the heat stress response of Bacillus cereus ATCC 14579. Applied and Environmental Microbiology, 68(7), 3486-3495. https://doi.org/10.1128/AEM.68.7.3486
Pichner, R., Schönheit, C., Kabisch, J., Böhnlein, C., Rabsch, W., Beutin, L., & Gareis, M. (2014). Assessment of microbiological quality and safety of marinated pork products from German retail during shelf life. Food Control, 46, 18-25. https://doi.org/10.1016/j.foodcont.2014.05.001
Pirhonen T.I., Andersson M.A., Jääskeläinen E.L., Salkinoja-Salonen M.S., Honkanen-Buzalski T., Johansson T.M.-L. (2005). Biochemical and toxic diversity of Bacillus cereus in a pasta and meat dish associated with a food-poisoning case. Food Microbiology, 22(1), 87-91. https://doi.org/10.1016/j.fm.2004.04.002
Prüß, B. M., Dietrich, R., Nibler, B., Märtlbauer, E., & Scherer, S. (1999). The hemolytic enterotoxin HBL Is broadly distributed among species of the Bacillus cereus group. Applied and Environmental Microbiology, 65(12), 5436-5442.
Rahimi, E., Abdos, F., Momtaz, H., Torki Baghbadorani, Z., & Jalali, M. (2013). Bacillus cereus in infant foods: Prevalence study and distribution of enterotoxigenic virulence factors in Isfahan Province, Iran. The Scientific World Journal, 2013, 292571. https://doi.org/10.1155/2013/292571
Rajkovic, A., Grootaert, C., Butorac, A., Cucu, T., De Meulenaer, B., van Camp, J., Bracke, M., Uyttendaele, M., Bačun-Družina, V., & Cindrić, M. (2014). Sub-emetic toxicity of Bacillus cereus toxin cereulide on cultured human enterocyte-like Caco-2 cells. Toxins, 6(8), 2270-2290. https://doi.org/10.3390/toxins6082270
Rajkovic, A., Smigic, N., & Devlieghere, F. (2010). Contemporary strategies in combating microbial contamination in food chain. International Journal of Food Microbiology, 141, S29-S42. https://doi.org/10.1016/j.ijfoodmicro.2009.12.019
Rajkovic, A., Uyttendaele, M., & Debevere, J. (2007). Computer aided boar semen motility analysis for cereulide detection in different food matrices. International Journal of Food Microbiology, 114(1), 92-99. https://doi.org/10.1016/j.ijfoodmicro.2006.09.031
Rajkovic, A., Uyttendaele, M., Dierick, K., Samapundo, S., Botteldoorn, N., Mahillon, J., & Heyndrickx, M. (2008). Risk profile of the Bacillus cereus group implicated in food poisoning. Report for the Superior Health Council Belgium, 1, 1-80.
Rajkovic, A., Uyttendaele, M., Ombregt, S. A., Jaaskelainen, E., Salkinoja-Salonen, M., & Debevere, J. (2006). Influence of type of food on the kinetics and overall production of Bacillus cereus emetic toxin. Journal of Food Protection, 69(4), 847-852. https://doi.org/10.4315/0362-028X-69.4.847
Rajkovic A., Jovanovic J., Monteiro S., Decleer M., Andjelkovic M., Foubert A., Beloglazova N., Tsilla V., Sas B., Madder A., De Saeger S., Uyttendaele M. (2020). Detection of toxins involved in foodborne diseases caused by Gram-positive bacteria. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1605-1657. https://doi.org/10.1111/1541-4337.12571
Ramarao, N., & Lereclus, D. (2005). The InhA 1 metalloprotease allows spores of the B. cereus group to escape macrophages. Cellular Microbiology, 7(9), 1357-1364. https://doi.org/10.1111/j.1462-5822.2005.00562.x
Ramarao, N., & Lereclus, D. (2006). Adhesion and cytotoxicity of Bacillus cereus and Bacillus thuringiensis to epithelial cells are FlhA and PlcR dependent, respectively. Microbes and Infection, 8(6), 1483-1491. https://doi.org/10.1016/j.micinf.2006.01.005
Ramarao, N., & Sanchis, V. (2013). The pore-forming haemolysins of Bacillus cereus: A review. Toxins, 5(6), 1119-1139. https://doi.org/10.3390/toxins5061119
Rasooly, R., Hernlem, B., He, X., & Friedman, M. (2015). Plant compounds enhance the assay sensitivity for detection of active Bacillus cereus toxin. Toxins, 7(3), 835-845. https://doi.org/10.3390/toxins7030835
Rejasse, A., Gilois, N., Barbosa, I., Huillet, E., Bevilacqua, C., Tran, S., Ramarao, N., Stenfors Arnesen, L. P., & Sanchis, V. (2012). Temperature-dependent production of various PlcR-controlled virulence factors in Bacillus weihenstephanensis strain KBAB4. Applied and Environmental Microbiology, 78(8), 2553-2561. https://doi.org/10.1128/AEM.07446-11
Rodríguez, L. A. G., Ruigómez, A., & Panés, J. (2007). Use of acid-suppressing drugs and the risk of bacterial gastroenteritis. Clinical Gastroenterology and Hepatology, 5(12), 1418-1423. https://doi.org/10.1016/j.cgh.2007.09.010
Rolny, I. S., Minnaard, J., Racedo, S. M., & Pérez, P. F. (2014). Murine model of Bacillus cereus gastrointestinal infection. Journal of Medical Microbiology, 63, 1741-1749. https://doi.org/10.1099/jmm.0.079939-0
Rolo, A. P., Oliveira, P. J., Moreno, A. J., & Palmeira, C. M. (2000). Bile acids affect liver mitochondrial bioenergetics: Possible relevance for cholestasis therapy. Toxicological Sciences, 57(1), 177-185. https://doi.org/10.1093/toxsci/57.1.177
Rosenquist, H., Smidt, L., Andersen, S. R., Jensen, G. B., & Wilcks, A. (2005). Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food. FEMS Microbiology Letters, 250(1), 129-136. https://doi.org/10.1016/j.femsle.2005.06.054
Ryan, P. A., Macmillan, J. D., & Zilinskas, B. A. (1997). Molecular cloning and characterization of the genes encoding the L1 and L2 components of hemolysin BL from Bacillus cereus. Journal of Bacteriology, 179(8), 2551-2556. https://doi.org/10.1128/jb.179.8.2551-2556.1997
Sadek, Z. I., Abdel-Rahman, M. A., Azab, M. S., Darwesh, O. M., & Hassan, M. S. (2018). Microbiological evaluation of infant foods quality and molecular detection of Bacillus cereus toxins relating genes. Toxicology Reports, 5, 871-877. https://doi.org/10.1016/j.toxrep.2018.08.013
Salem, N. A., Jakee, J. E., Nasef, S. A., & Badr, H. (2015). Prevalence of Bacillus cereus in milk and milk products. Animal Health Research Journal, 3, 168-172. https://doi.org/10.13140/RG.2.2.33107.63526
Salvetti, S., Ghelardi, E., Celandroni, F., Ceragioli, M., Giannessi, F., & Senesi, S. (2007). FlhF, a signal recognition particle-like GTPase, is involved in the regulation of flagellar arrangement, motility behaviour and protein secretion in Bacillus cereus. Microbiology, 153(8), 2541-2552. https://doi.org/10.1099/mic.0.2006/005553-0
Samapundo, S., Heyndrickx, M., Xhaferi, R., & Devlieghere, F. (2011). Incidence, diversity and toxin gene characteristics of Bacillus cereus group strains isolated from food products marketed in Belgium. International Journal of Food Microbiology, 150(1), 34-41. https://doi.org/10.1016/j.ijfoodmicro.2011.07.013
Sánchez, B., Arias, S., Chaignepain, S., Denayrolles, M., Schmitter, J. M., Bressollier, P., & Urdaci, M. C. (2009). Identification of surface proteins involved in the adhesion of a probiotic Bacillus cereus strain to mucin and fibronectin. Microbiology, 155(5), 1708-1716. https://doi.org/10.1099/mic.0.025288-0
Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., Jones, J. L., & Griffin, P. M. (2011). Foodborne illness acquired in the United States - Major pathogens. Emerging Infectious Diseases, 17(1), 7-15. https://doi.org/10.3201/eid1701.P11101
Schacherl M., Baumann U. (2016). Feeding Anthrax: The Crystal Structure of Bacillus anthracis InhA Protease. Structure, 24(1), 1-2. https://doi.org/10.1016/j.str.2015.12.002
van Schaik, W., Tempelaars, M. H., Wouters, J. A., de Vos, W. M., & Abee, T. (2004). The alternative sigma factor σB of Bacillus cereus: Response to stress and role in heat adaptation. Journal of Bacteriology, 186(2), 316-325. https://doi.org/10.1128/JB.186.2.316-325.2004
Schlamowitz, M., & Peterson, L. U. (1959). Studies on the optimum pH for the action of pepsin on" native" and denatured bovine serum albumin and bovine hemoglobin. Journal of Biological Chemistry, 234(12), 3137-3145.
Segond, D., Abi Khalil, E., Buisson, C., Daou, N., Kallassy, M., Lereclus, D., Arosio, P., Bou-Abdallah, F., & Nielsen Le Roux, C. (2014). Iron acquisition in Bacillus cereus: The roles of IlsA and bacillibactin in exogenous ferritin iron mobilization. PLoS Pathogens, 10(2), e1003935. https://doi.org/10.1371/journal.ppat.1003935
Senesi, S., Celandroni, F., Salvetti, S., Beecher, D. J., Wong, A. C., & Ghelardi, E. (2002). Swarming motility in Bacillus cereus and characterization of a fliY mutant impaired in swarm cell differentiation. Microbiology, 148(6), 1785-1794. https://doi.org/10.1099/00221287-148-6-1785
Senesi, S., & Ghelardi, E. (2010). Production, secretion and biological activity of Bacillus cereus enterotoxins. Toxins, 2(7), 1690-1703. https://doi.org/10.3390/toxins2071690
Shinagawa, K., Konuma, H., Sekita, H., & Sugii, S. (1995). Emesis of rhesus monkeys induced by intragastric administration with the HEp-2 vacuolation factor (cereulide) produced by Bacillus cereus. FEMS Microbiology Letters, 130(1), 87-90. https://doi.org/10.1016/0378-1097(95)00188-B
Shiota, M., Saitou, K., Mizumoto, H., Matsusaka, M., Agata, N., Nakayama, M., Kage, M., Tatsumi, S., Okamoto, A., Yamaguchi, S., Ohta, M., & Hata, D. (2010). Rapid detoxification of cereulide in Bacillus cereus food poisoning. Pediatrics, 125(4), e951-e955. https://doi.org/10.1542/peds.2009-2319
Sineva, E., Shadrin, A., Rodikova, E. A., Andreeva-Kovalevskaya, Z. I., Protsenko, A. S., Mayorov, S. G., Galaktionova, D. Y., Magelky, E., & Solonin, A. S. (2012). Iron regulates expression of Bacillus cereus hemolysin II via global regulator Fur. Journal of Bacteriology, 194(13), 3327-3335. https://doi.org/10.1128/JB.00199-12
Slamti, L., & Lereclus, D. (2002). A cell-cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. EMBO Journal, 21(17), 4550-4559. https://doi.org/10.1093/emboj/cdf450
Slamti, L., Perchat, S., Gominet, M., Vilas-Bôas, G., Fouet, A., Mock, M., Sanchis, V., Chaufaux, J., Gohar, M., & Lereclus, D. (2004). Distinct mutations in PlcR explain why some strains of the Bacillus cereus group are nonhemolytic. Journal of Bacteriology, 186(11), 3531-3538. https://doi.org/10.1128/JB.186.11.3531
Smith, J. L. (2003). The role of gastric acid in preventing foodborne disease and how bacteria overcome acid conditions. Journal of Food Protection, 66(7), 1292-1303. https://doi.org/10.4315/0362-028X-66.7.1292
Sonenshein, A. L. (2007). Control of key metabolic intersections in Bacillus subtilis. Nature Reviews Microbiology, 5(12), 917-927. https://doi.org/10.1038/nrmicro1772
Spanu, C., Scarano, C., Spanu, V., Pala, C., Casti, D., Lamon, S., Cossu, F., Ibba, M., Nieddu, G., & De Santis, E. P. L. (2016). Occurrence and behavior of Bacillus cereus in naturally contaminated ricotta salata cheese during refrigerated storage. Food Microbiology, 58, 135-138. https://doi.org/10.1016/j.fm.2016.05.002
Stenfors Arnesen, L. P., Fagerlund, A., & Granum, P. E. (2008). From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiology Reviews, 32(4), 579-606. https://doi.org/10.1111/j.1574-6976.2008.00112.x
Strauch, M., Webb, V., Spiegelman, G., & Hoch, J. A. (1990). The SpoOA protein of Bacillus subtilis is a repressor of the abrB gene. Proceedings of the National Academy of Sciences, 87(5), 1801-1805.
Svensson, B., Monthan, A., Shaheen, R., Andersson, M. A., Salkinoja-Salonen, M., & Christiansson, A. (2006). Occurrence of emetic toxin producing Bacillus cereus in the dairy production chain. International Dairy Journal, 16(7), 740-749. https://doi.org/10.1016/j.idairyj.2005.07.002
Swick, M. C., Koehler, T. M., & Driks, A. (2016). Surviving between hosts: Sporulation and transmission. Virulence Mechanisms of Bacterial Pathogens, 4(4), 567-591. https://doi.org/10.1128/9781555819286.ch20
Tam, N. K. M., Uyen, N. Q., Hong, H. A., Duc, L. H., Hoa, T. T., Serra, C. R., Henriques, A. O., & Cutting, S. M. (2006). The intestinal life cycle of Bacillus subtilis and close relatives. Journal of Bacteriology, 188(7), 2692-2700. https://doi.org/10.1128/JB.188.7.2692-2700.2006
Tan, A., Heaton, S., Farr, L., & Bates, J. (1997). The use of Bacillus diarrhoeal enterotoxin (BDE) detection using an ELISA technique in the confirmation of the aetiology of Bacillus-mediated diarrhoea. Journal of Applied Microbiology, 82(6), 677-682. https://doi.org/10.1046/j.1365-2672.1997.00177.x
Tausch, F., Dietrich, R., Id, K. S., Janowski, R., Niessing, D., Märtlbauer, E., & Jessberger, N. (2017). Bacillus cereus haemolysin BL components in solution. Toxins, 9(9), 288. https://doi.org/10.3390/toxins9090288
Tennant, S. M., Hartland, E. L., Phumoonna, T., Lyras, D., Rood, J. I., Robins-Browne, R. M., & van Driel, I. R. (2008). Influence of gastric acid on susceptibility to infection with ingested bacterial pathogens. Infection and Immunity, 76(2), 639-645. https://doi.org/10.1128/IAI.01138-07
Teplova, V. V., Mikkola, R., Tonshin, A. A., Saris, N. E. L., & Salkinoja-Salonen, M. S. (2006). The higher toxicity of cereulide relative to valinomycin is due to its higher affinity for potassium at physiological plasma concentration. Toxicology and Applied Pharmacology, 210(1-2), 39-46. https://doi.org/10.1016/j.taap.2005.06.012
Tewari, A., Singh, S. P., & Singh, R. (2015). Incidence and enterotoxigenic profile of Bacillus cereus in meat and meat products of Uttarakhand, India. Journal of Food Science and Technology, 52(3), 1796-1801. https://doi.org/10.1007/s13197-013-1162-0
Thermo Scientific. (n.d.). Oxoid™ BCET-RPLA Toxin Detection Kit. https://www.thermofisher.com/order/catalog/product/TD0950A#/TD0950A
Thomassin, S., Jobin, M. P., & Schmitt, P. (2006). The acid tolerance response of Bacillus cereus ATCC14579 is dependent on culture pH, growth rate and intracellular pH. Archives of Microbiology, 186(3), 229-239. https://doi.org/10.1007/s00203-006-0137-1
Thorsen L., Hansen B. M., Nielsen K. F., Hendriksen N. B., Phipps R. K., Budde B. B. (2006). Characterization of emetic Bacillus weihenstephanensis, a new cereulide-producing bacterium. Applied and Environmental Microbiology, 72(7), 5118-5121. https://doi.org/10.1128/aem.00170-06
Tran, S. L., Guillemet, E., Gohar, M., Lereclus, D., & Ramarao, N. (2010). CwpFM (EntFM) is a Bacillus cereus potential cell wall peptidase implicated in adhesion, biofilm formation, and virulence. Journal of Bacteriology, 192(10), 2638-2642. https://doi.org/10.1128/JB.01315-09
Tran, S. L., Guillemet, E., Ngo-Camus, M., Clybouw, C., Puhar, A., Moris, A., Gohar, M., Lereclus, D., & Ramarao, N. (2011). Haemolysin II is a Bacillus cereus virulence factor that induces apoptosis of macrophages. Cellular Microbiology, 13(1), 92-108. https://doi.org/10.1111/j.1462-5822.2010.01522.x
Tran, S. L., Puhar, A., Ngo-Camus, M., & Ramarao, N. (2011). Trypan blue dye enters viable cells incubated with the pore-forming toxin HlyII of Bacillus cereus. PLoS ONE, 6(9), 2-6. https://doi.org/10.1371/journal.pone.0022876
Tran, S. L., & Ramarao, N. (2013). Bacillus cereus immune escape: A journey within macrophages. FEMS Microbiology Letters, 347(1), 1-6. https://doi.org/10.1111/1574-6968.12209
Tschiedel, E., Rath, P. M., Steinmann, J., Becker, H., Dietrich, R., Paul, A., Felderhoff-Müser, U., & Dohna-Schwake, C. (2015). Lifesaving liver transplantation for multi-organ failure caused by Bacillus cereus food poisoning. Pediatric Transplantation, 19(1), E11-E14. https://doi.org/10.1111/petr.12378
Tsilia, V., Devreese, B., De, I. B., Mesuere, B., Rajkovic, A., Uyttendaele, M., Van de Wiele, T., & Heyndrickx, M. (2012). Application of MALDI-TOF mass spectrometry for the detection of enterotoxins produced by pathogenic strains of the Bacillus cereus group. Analytical and Bioanalytical Chemistry, 404(6-7), 1691-1702. https://doi.org/10.1007/s00216-012-6254-6
Tsilia, V., Uyttendaele, M., Kerckhof, F. M., Rajkovic, A., Heyndrickx, M., & Van de Wiele, T. (2015). Bacillus cereus adhesion to simulated intestinal mucus is determined by its growth on mucin, rather than intestinal environmental parameters. Foodborne Pathogens and Disease, 12(11), 904-913. https://doi.org/10.1089/fpd.2014.1926
Tuipulotu, D. E., Mathur, A., Ngo, C., & Man, S. M. (2020). Bacillus cereus: Epidemiology, virulence factors, and host-pathogen interactions. Trends in Microbiology, 29(5), 458-471. https://doi.org/10.1016/j.tim.2020.09.003
Ueda, S., Yamaguchi, M., Eguchi, K., & Iwase, M. (2016). Identification of cereulide-producing Bacillus cereus by nucleic acid chromatography and reverse transcription real-time PCR. Biocontrol Science, 21(1), 45-50. https://doi.org/10.4265/bio.21.45
Ulrich, S., Gottschalk, C., Dietrich, R., Märtlbauer, E., & Gareis, M. (2019). Identification of cereulide producing Bacillus cereus by MALDI-TOF MS. Food Microbiology, 82(1), 75-81. https://doi.org/10.1016/j.fm.2019.01.012
Vangoitsenhoven, R., Rondas, D., Crèvecoeur, I., D'Hertog, W., Baatsen, P., Masini, M., Andjelkovic, M., Van Loco, J., Matthys, C., Mathieu, C., Overbergh, L., & Van der Schueren, B. (2014). Foodborne cereulide causes beta-cell dysfunction and apoptosis. PLoS ONE, 9(8), e104866. https://doi.org/10.1371/journal.pone.0104866
Vidic, J., Chaix, C., Manzano, M., & Heyndrickx, M. (2020). Food sensing: Detection of Bacillus cereus spores in dairy products. Biosensors, 10(3), 1-16. https://doi.org/10.3390/bios10030015
van der Voort, M., García, D., Moezelaar, R., & Abee, T. (2010). Germinant receptor diversity and germination responses of four strains of the Bacillus cereus group. International Journal of Food Microbiology, 139(1-2), 108-115. https://doi.org/10.1016/j.ijfoodmicro.2010.01.028
van der Voort, M., Kuipers, O. P., Buist, G., De Vos, W. M., & Abee, T. (2008). Assessment of CcpA-mediated catabolite control of gene expression in Bacillus cereus ATCC 14579. BMC Microbiology, 8, 1-12. https://doi.org/10.1186/1471-2180-8-62
Warda, A. K., Xiao, Y., Boekhorst, J., Wells-Bennik, M. H., Groot, M. N. N., & Abee, T. (2017). Analysis of germination capacity and germinant receptor (sub) clusters of genome-sequenced Bacillus cereus environmental isolates and model strains. Applied and Environmental Microbiology, 83(4), e02490-16. https://doi.org/10.1128/AEM.02490-16
Webb, M. D., Barker, G. C., Goodburn, K. E., & Peck, M. W. (2019). Risk presented to minimally processed chilled foods by psychrotrophic Bacillus cereus. Trends in Food Science and Technology, 93, 94-105. https://doi.org/10.1016/j.tifs.2019.08.024
Wehrle, E., Moravek, M., Dietrich, R., Bürk, C., Didier, A., & Märtlbauer, E. (2009). Comparison of multiplex PCR, enzyme immunoassay and cell culture methods for the detection of enterotoxinogenic Bacillus cereus. Journal of Microbiological Methods, 78(3), 265-270. https://doi.org/10.1016/j.mimet.2009.06.013
Wiencek, K. M., Klapes, N. A., Foegedingl, P. M., & Carolina, N. (1990). Hydrophobicity of Bacillus and Clostridium spores. Applied and Environmental Microbiology, 56 (9), 2600-2605.
Wijnands, L. M. (2011). Bacillus cereus associated food borne disease quantitative aspects of exposure assessment and hazard characterization (Doctoral dissertation, University of Wageningen). https://library.wur.nl/WebQuery/wurpubs/366677
Wijnands, L. M., Dufrenne, J. B., Rombouts, F. M., In't Veld, P. H., & Van Leusden, F. M. (2006). Prevalence of potentially pathogenic Bacillus cereus in food commodities in the Netherlands. Journal of Food Protection, 69(11), 2587-2594. https://doi.org/10.4315/0362-028X-69.11.2587
Wijnands, L. M., Dufrenne, J. B., & van Leusden, F. M. (2005). Bacillus cereus: Characteristics, behaviour in the gastro-intestinal tract, and interaction with Caco-2 cells (RIVM report 250912003/2005). National Institute for Public Health and the Environment (RIVM).
Wijnands, L. M., Dufrenne, J. B., Zwietering, M. H., & Van Leusden, F. M. (2006). Spores from mesophilic Bacillus cereus strains germinate better and grow faster in simulated gastro-intestinal conditions than spores from psychrotrophic strains. International Journal of Food Microbiology, 112(2), 120-128. https://doi.org/10.1016/j.ijfoodmicro.2006.06.015
Wijnands, L. M., Pielaat, A., Dufrenne, J. B., Zwietering, M. H., & Van Leusden, F. M. (2009). Modelling the number of viable vegetative cells of Bacillus cereus passing through the stomach. Journal of Applied Microbiology, 106(1), 258-267. https://doi.org/10.1111/j.1365-2672.2008.03999.x
Wilcks, A., Hansen, B. M., Hendriksen, N. B., & Licht, T. R. (2006). Fate and effect of ingested Bacillus cereus spores and vegetative cells in the intestinal tract of human-flora-associated rats. FEMS Immunology and Medical Microbiology, 46(1), 70-77. https://doi.org/10.1111/j.1574-695X.2005.00007.x
Wu, Y. n., Liu, X. m., Chen, Q., Liu, H., Dai, Y., Zhou, Y. j., Wen, J., Tang, Z.-Z., & Chen, Y. (2018). Surveillance for foodborne disease outbreaks in China, 2003 to 2008. Food Control, 84, 382-388. https://doi.org/10.1016/j.foodcont.2017.08.010
Yim, J. H., Kim, K. Y., Chon, J. W., Kim, D. H., Kim, H. S., Choi, D. S., Choi, I.-S., & Seo, K. H. (2015). Incidence, antibiotic susceptibility, and toxin profiles of Bacillus cereus sensu lato isolated from Korean fermented soybean products. Journal of Food Science, 80(6), M1266-M1270. https://doi.org/10.1111/1750-3841.12872
Yoo, J. G., Chang, J. H., Kim, S. y., Ji, J. Y., Hong, S. W., Park, B. Y., & Oh, M. H. (2014). Analysis of emetic toxin production by Bacillus species using cellular cytotoxicity, molecular, and chromatographic assays. Biotechnology and Bioprocess Engineering, 19(6), 978-983. https://doi.org/10.1007/s12257-014-0574-7
Yu, B., Li, F., Zhao, T., Li, F., Zhou, B., & Xu, H. (2018). Hybridization chain reaction-based flow cytometric bead sensor for the detection of emetic Bacillus cereus in milk. Sensors and Actuators, B: Chemical, 256, 624-631. https://doi.org/10.1016/j.snb.2017.09.199
Yu, P., Yu, S., Wang, J., Guo, H., Zhang, Y., Liao, X., Zhang, J., Wu, S., Gu, Q., Xue, L., Zeng, H., Pang, R., Lei, T., Zhang J., Wu, Q., & Ding, Y. (2019). Bacillus cereus isolated from vegetables in China: Incidence, genetic diversity, virulence genes, and antimicrobial resistance. Frontiers in Microbiology, 10, 948. https://doi.org/10.3389/fmicb.2019.00948
Yu, S., Yu, P., Wang, J., Li, C., Guo, H., Liu, C., Kong, L., Yu, L., Wu, S., Lei, T., Chen, M., Zeng, H., Pang, R., Zhang, Y., Wei, X., Zhang, J., Wu, Q., & Ding, Y. (2020). A study on prevalence and characterization of Bacillus cereus in ready-to-eat foods in China. Frontiers in Microbiology, 10, 1-11. https://doi.org/10.3389/fmicb.2019.03043
Zeighami, H., Nejad-Dost, G., Parsadanians, A., Daneshamouz, S., & Haghi, F. (2020). Frequency of hemolysin BL and non-hemolytic enterotoxin complex genes of Bacillus cereus in raw and cooked meat samples in Zanjan, Iran. Toxicology Reports, 7, 89-92. https://doi.org/10.1016/j.toxrep.2019.12.006
Zhang, J., Di, B., Shan, H., Liu, J., Zhou, Y., Chen, H., Hu, L., Wu, X., & Bai, Z. (2019). Rapid detection of Bacillus cereus using cross-priming amplification. Journal of Food Protection, 82(10), 1744-1750. https://doi.org/10.4315/0362-028X.JFP-19-156
Zhao, Y., Su, L., Li, K., & Zhao, B. (2020). Discovery of novel PC-PLC activity inhibitors. Chemical Biology & Drug Design, 95(3), 380-387. https://doi.org/10.1111/cbdd.13606
Zhou, P., Xie, G., Liang, T., Yu, B., Aguilar, Z., & Xu, H. (2019). Rapid and quantitative detection of viable emetic Bacillus cereus by PMA-qPCR assay in milk. Molecular and Cellular Probes, 47, 101437. https://doi.org/10.1016/j.mcp.2019.101437
Zhu, K., Didier, A., Dietrich, R., Heilkenbrinker, U., & Benz, R. (2016). Formation of small transmembrane pores: An intermediate stage on the way to Bacillus cereus non-hemolytic enterotoxin (Nhe) full pores in the absence of NheA. Biochemical and Biophysical Research Communications, 469(3), 613-618. https://doi.org/10.1016/j.bbrc.2015.11.126
Zhu, L., He, J., Cao, X., Huang, K., Luo, Y., & Xu, W. (2016). Development of a double-antibody sandwich ELISA for rapid detection of Bacillus cereus in food. Scientific Reports, 6, 1-10. https://doi.org/10.1038/srep16092
Zigha, A., Rosenfeld, E., Schmitt, P., & Duport, C. (2007). The redox regulator Fnr is required for fermentative growth and enterotoxin synthesis in Bacillus cereus F4430/73. Journal of Bacteriology, 189(7), 2813-2824. https://doi.org/10.1128/JB.01701-06