Exploring the evidence for epigenetic regulation of environmental influences on child health across generations.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
22 06 2021
22 06 2021
Historique:
received:
23
09
2020
accepted:
03
06
2021
entrez:
23
6
2021
pubmed:
24
6
2021
medline:
17
8
2021
Statut:
epublish
Résumé
Environmental exposures, psychosocial stressors and nutrition are all potentially important influences that may impact health outcomes directly or via interactions with the genome or epigenome over generations. While there have been clear successes in large-scale human genetic studies in recent decades, there is still a substantial amount of missing heritability to be elucidated for complex childhood disorders. Mounting evidence, primarily in animals, suggests environmental exposures may generate or perpetuate altered health outcomes across one or more generations. One putative mechanism for these environmental health effects is via altered epigenetic regulation. This review highlights the current epidemiologic literature and supporting animal studies that describe intergenerational and transgenerational health effects of environmental exposures. Both maternal and paternal exposures and transmission patterns are considered, with attention paid to the attendant ethical, legal and social implications.
Identifiants
pubmed: 34158610
doi: 10.1038/s42003-021-02316-6
pii: 10.1038/s42003-021-02316-6
pmc: PMC8219763
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
769Subventions
Organisme : NIEHS NIH HHS
ID : R01 ES029213
Pays : United States
Organisme : NIH HHS
ID : UH3 OD023290
Pays : United States
Organisme : NIH HHS
ID : U2C OD023375
Pays : United States
Organisme : NIH HHS
ID : UH3 OD023285
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI141569
Pays : United States
Organisme : NIH HHS
ID : P51 OD011107
Pays : United States
Organisme : NIH HHS
ID : UH3 OD023282
Pays : United States
Organisme : NIH HHS
ID : UH3 OD023348
Pays : United States
Organisme : NICHD NIH HHS
ID : R01 HD041462
Pays : United States
Organisme : NIH HHS
ID : UH3 OD023287
Pays : United States
Organisme : NICHD NIH HHS
ID : R01 HD093643
Pays : United States
Organisme : NIH HHS
ID : UH3 OD023342
Pays : United States
Organisme : NIEHS NIH HHS
ID : K99 ES030403
Pays : United States
Organisme : NIH HHS
ID : UH3 OD023244
Pays : United States
Organisme : NIH HHS
ID : UH3 OD023365
Pays : United States
Organisme : NIH HHS
ID : UH3 OD023337
Pays : United States
Organisme : NIH HHS
ID : U24 OD023382
Pays : United States
Organisme : NIH HHS
ID : UH3 OD023313
Pays : United States
Organisme : NIH HHS
ID : UH3 OD023289
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL125761
Pays : United States
Organisme : NIEHS NIH HHS
ID : P30 ES023513
Pays : United States
Organisme : NIEHS NIH HHS
ID : R01 ES025574
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH121070
Pays : United States
Organisme : NIDDK NIH HHS
ID : K01 DK120807
Pays : United States
Organisme : NIH HHS
ID : UH3 OD023305
Pays : United States
Organisme : NIH HHS
ID : UG3 OD023290
Pays : United States
Organisme : NIH HHS
ID : UH3 OD023328
Pays : United States
Références
Heard, E. & Martienssen, R. A. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157, 95–109 (2014).
pubmed: 24679529
pmcid: 4020004
doi: 10.1016/j.cell.2014.02.045
Nagy, C. & Turecki, G. Transgenerational epigenetic inheritance: an open discussion. Epigenomics 7, 781–790 (2015).
pubmed: 26344807
doi: 10.2217/epi.15.46
Whitelaw, N. C. & Whitelaw, E. Transgenerational epigenetic inheritance in health and disease. Curr. Opin. Genet. Dev. 18, 273–279 (2008).
pubmed: 18662779
doi: 10.1016/j.gde.2008.07.001
Pang, S. & Curran, S. P. Longevity and the long arm of epigenetics: acquired parental marks influence lifespan across several generations. Bioessays 34, 652–654 (2012).
pubmed: 22674543
pmcid: 3779125
doi: 10.1002/bies.201200046
Benayoun, B. A. & Brunet, A. Epigenetic memory of longevity in caenorhabditis elegans. Worm 1, 77–81 (2012).
pubmed: 24058828
pmcid: 3670177
doi: 10.4161/worm.19157
Berger, S. L. Transgenerational inheritance of longevity: epigenetic mysteries abound. Cell Metab. 15, 6–7 (2012).
pubmed: 22225870
doi: 10.1016/j.cmet.2011.12.012
Rankin, C. H. A review of transgenerational epigenetics for RNAi, longevity, germline maintenance and olfactory imprinting in Caenorhabditis elegans. J. Exp. Biol. 218, 41–49 (2015).
pubmed: 25568450
doi: 10.1242/jeb.108340
Aiken, C. E., Tarry-Adkins, J. L. & Ozanne, S. E. Transgenerational effects of maternal diet on metabolic and reproductive ageing. Mamm. Genome 27, 430–439 (2016).
pubmed: 27114382
pmcid: 4935748
doi: 10.1007/s00335-016-9631-1
Vaiserman, A. M., Koliada, A. K. & Jirtle, R. L. Non-genomic transmission of longevity between generations: potential mechanisms and evidence across species. Epigenetics Chromatin 10, 38 (2017).
pubmed: 28750655
pmcid: 5531095
doi: 10.1186/s13072-017-0145-1
Huypens, P. et al. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat. Genet. 48, 497–499 (2016).
pubmed: 26974008
doi: 10.1038/ng.3527
Horsthemke, B. A critical view on transgenerational epigenetic inheritance in humans. Nat. Commun. 9, 2973 (2018).
pubmed: 30061690
pmcid: 6065375
doi: 10.1038/s41467-018-05445-5
Martos, S. N., Tang, W. Y. & Wang, Z. Elusive inheritance: transgenerational effects and epigenetic inheritance in human environmental disease. Prog. Biophys. Mol. Biol. 118, 44–54 (2015).
pubmed: 25792089
pmcid: 4784256
doi: 10.1016/j.pbiomolbio.2015.02.011
Dupras, C., Saulnier, K. M. & Joly, Y. Epigenetics, ethics, law and society: a multidisciplinary review of descriptive, instrumental, dialectical and reflexive analyses. Soc. Stud. Sci. 49, 785–810 (2019).
pubmed: 31366289
pmcid: 6801799
doi: 10.1177/0306312719866007
Huang, J. Y. & King, N. B. Epigenetics changes nothing: what a new scientific field does and does not mean for ethics and social justice. Public Health Ethics 11, 69–81 (2018).
pubmed: 30619507
doi: 10.1093/phe/phx013
Chiapperino, L. Epigenetics: ethics, politics, biosociality. Br. Med. Bull. 128, 49–60 (2018).
pubmed: 30329024
doi: 10.1093/bmb/ldy033
Jackson, M., Marks, L., May, G. H. W. & Wilson, J. B. The genetic basis of disease. Essays Biochem. 62, 643–723 (2018).
pubmed: 30509934
pmcid: 6279436
doi: 10.1042/EBC20170053
Hammoud, S. S. et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature 460, 473–478 (2009).
pubmed: 19525931
pmcid: 2858064
doi: 10.1038/nature08162
Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 102, 10604–10609 (2005).
pubmed: 16009939
doi: 10.1073/pnas.0500398102
pmcid: 1174919
McRae, A. F. et al. Contribution of genetic variation to transgenerational inheritance of DNA methylation. Genome Biol. 15, R73 (2014).
pubmed: 24887635
pmcid: 4072933
doi: 10.1186/gb-2014-15-5-r73
Busche, S. et al. Population whole-genome bisulfite sequencing across two tissues highlights the environment as the principal source of human methylome variation. Genome Biol. 16, 290 (2015).
pubmed: 26699896
pmcid: 4699357
doi: 10.1186/s13059-015-0856-1
Gunasekara, C. J. et al. A genomic atlas of systemic interindividual epigenetic variation in humans. Genome Biol. 20, 105 (2019).
pubmed: 31155008
pmcid: 6545702
doi: 10.1186/s13059-019-1708-1
Hakonsen, L. B. et al. Exposures that may affect sperm DNA integrity: two decades of follow-up in a pregnancy cohort. Reprod. Toxicol. 33, 316–321 (2012).
pubmed: 22230645
doi: 10.1016/j.reprotox.2011.12.013
Auger, J. et al. Sperm morphological defects related to environment, lifestyle and medical history of 1001 male partners of pregnant women from four European cities. Hum. Reprod. 16, 2710–2717 (2001).
pubmed: 11726600
doi: 10.1093/humrep/16.12.2710
Boeri, L. et al. Low birth weight is associated with a decreased overall adult health status and reproductive capability - results of a cross-sectional study in primary infertile patients. PLoS ONE 11, e0166728 (2016).
pubmed: 27893825
pmcid: 5125617
doi: 10.1371/journal.pone.0166728
Kahn, L. G. et al. The relation of birth weight and adiposity across the life course to semen quality in middle age. Epidemiology 30, S17–s27 (2019).
pubmed: 31569149
pmcid: 7055633
doi: 10.1097/EDE.0000000000001070
Olsen, J. et al. Birthweight and semen characteristics. Int. J. Androl. 23, 230–235 (2000).
pubmed: 10886426
doi: 10.1046/j.1365-2605.2000.00239.x
Guo, Y. L., Hsu, P. C., Hsu, C. C. & Lambert, G. H. Semen quality after prenatal exposure to polychlorinated biphenyls and dibenzofurans. Lancet 356, 1240–1241 (2000).
pubmed: 11072947
doi: 10.1016/S0140-6736(00)02792-6
Axelsson, J. et al. Prenatal phthalate exposure and reproductive function in young men. Environ. Res. 138, 264–270 (2015).
pubmed: 25743932
doi: 10.1016/j.envres.2015.02.024
Barakat, R., Seymore, T., Lin, P. P., Park, C. J. & Ko, C. J. Prenatal exposure to an environmentally relevant phthalate mixture disrupts testicular steroidogenesis in adult male mice. Environ. Res. 172, 194–201 (2019).
pubmed: 30802670
pmcid: 6511329
doi: 10.1016/j.envres.2019.02.017
Faqi, A. S., Dalsenter, P. R., Merker, H. J. & Chahoud, I. Reproductive toxicity and tissue concentrations of low doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin in male offspring rats exposed throughout pregnancy and lactation. Toxicol. Appl Pharm. 150, 383–392 (1998).
doi: 10.1006/taap.1998.8433
Byskov, A. G. Differentiation of mammalian embryonic gonad. Physiol. Rev. 66, 71–117 (1986).
pubmed: 3511481
doi: 10.1152/physrev.1986.66.1.71
Prince, F. P. The triphasic nature of Leydig cell development in humans, and comments on nomenclature. J. Endocrinol. 168, 213–216 (2001).
pubmed: 11182757
doi: 10.1677/joe.0.1680213
Sharpe, R. M., McKinnell, C., Kivlin, C. & Fisher, J. S. Proliferation and functional maturation of sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125, 769–784 (2003).
pubmed: 12773099
doi: 10.1530/rep.0.1250769
Surani, M. A. Reprogramming of genome function through epigenetic inheritance. Nature 414, 122–128 (2001).
pubmed: 11689958
doi: 10.1038/35102186
Zamudio, N. M., Chong, S. & O’Bryan, M. K. Epigenetic regulation in male germ cells. Reproduction 136, 131–146 (2008).
pubmed: 18515312
doi: 10.1530/REP-07-0576
Hirshfield, A. N. Development of follicles in the mammalian ovary. Int. Rev. Cytol. 124, 43–101 (1991).
pubmed: 2001918
doi: 10.1016/S0074-7696(08)61524-7
Hoyer, P. B. & Sipes, I. G. Assessment of follicle destruction in chemical-induced ovarian toxicity. Annu Rev. Pharm. Toxicol. 36, 307–331 (1996).
doi: 10.1146/annurev.pa.36.040196.001515
Meldrum, D. R. et al. Aging and the environment affect gamete and embryo potential: can we intervene? Fertil. Steril. 105, 548–559 (2016).
pubmed: 26812244
doi: 10.1016/j.fertnstert.2016.01.013
Machtinger, R. & Orvieto, R. Bisphenol A, oocyte maturation, implantation, and IVF outcome: review of animal and human data. Reprod. Biomed. Online 29, 404–410 (2014).
pubmed: 25154017
doi: 10.1016/j.rbmo.2014.06.013
Eichenlaub-Ritter, U. & Pacchierotti, F. Bisphenol A effects on mammalian oogenesis and epigenetic integrity of oocytes: a case study exploring risks of endocrine disrupting chemicals. Biomed. Res. Int. 2015, 698795 (2015).
pubmed: 26339634
pmcid: 4538425
doi: 10.1155/2015/698795
Gao, D. et al. Embryonic exposure to benzo(a)pyrene inhibits reproductive capability in adult female zebrafish and correlation with DNA methylation. Environ. Pollut. 240, 403–411 (2018).
pubmed: 29753248
doi: 10.1016/j.envpol.2018.04.139
Liu, H. et al. Toxic effects of 1-(N-methyl-N-nitrosamino)-1-(3-pyridinyl)-4-butanal on the maturation and subsequent development of murine oocyte. Ecotoxicol. Environ. Saf. 181, 370–380 (2019).
pubmed: 31212185
doi: 10.1016/j.ecoenv.2019.06.006
Du Plessis, S. S., Cabler, S., McAlister, D. A., Sabanegh, E. & Agarwal, A. The effect of obesity on sperm disorders and male infertility. Nat. Rev. Urol. 7, 153–161 (2010).
pubmed: 20157305
doi: 10.1038/nrurol.2010.6
Esakky, P. & Moley, K. H. Paternal smoking and germ cell death: a mechanistic link to the effects of cigarette smoke on spermatogenesis and possible long-term sequelae in offspring. Mol. Cell Endocrinol. 435, 85–93 (2016).
pubmed: 27424142
pmcid: 5014701
doi: 10.1016/j.mce.2016.07.015
Gunes, S., Metin Mahmutoglu, A., Arslan, M. A. & Henkel, R. Smoking-induced genetic and epigenetic alterations in infertile men. Andrologia 50, e13124 (2018).
pubmed: 30132931
doi: 10.1111/and.13124
Sepaniak, S. et al. The influence of cigarette smoking on human sperm quality and DNA fragmentation. Toxicology 223, 54–60 (2006).
pubmed: 16621218
doi: 10.1016/j.tox.2006.03.001
Dieamant, F. et al. Semen parameters in men with varicocele: DNA fragmentation, chromatin packaging, mitochondrial membrane potential, and apoptosis. JBRA Assist Reprod. 21, 295–301 (2017).
pubmed: 29068181
pmcid: 5714595
Roque, M. & Esteves, S. C. Effect of varicocele repair on sperm DNA fragmentation: a review. Int. Urol. Nephrol. 50, 583–603 (2018).
pubmed: 29542060
doi: 10.1007/s11255-018-1839-4
Cunningham, K. A. & Beagley, K. W. Male genital tract chlamydial infection: implications for pathology and infertility. Biol. Reprod. 79, 180–189 (2008).
pubmed: 18480466
doi: 10.1095/biolreprod.108.067835
Gallegos, G. et al. Sperm DNA fragmentation in infertile men with genitourinary infection by chlamydia trachomatis and mycoplasma. Fertil. Steril. 90, 328–334 (2008).
pubmed: 17953955
doi: 10.1016/j.fertnstert.2007.06.035
Moazenchi, M. et al. The impact of Chlamydia trachomatis infection on sperm parameters and male fertility: a comprehensive study. Int J. STD AIDS 29, 466–473 (2018).
pubmed: 29065772
doi: 10.1177/0956462417735245
Morris, I. D. Sperm DNA damage and cancer treatment. Int. J. Androl. 25, 255–261 (2002).
pubmed: 12270021
doi: 10.1046/j.1365-2605.2002.00372.x
Smarr, M. M., Kannan, K., Chen, Z., Kim, S. & Buck Louis, G. M. Male urinary paracetamol and semen quality. Andrology 5, 1082–1088 (2017).
pubmed: 28853221
doi: 10.1111/andr.12413
Bosco, L. et al. Sperm DNA fragmentation: An early and reliable marker of air pollution. Environ. Toxicol. Pharm. 58, 243–249 (2018).
doi: 10.1016/j.etap.2018.02.001
Jurewicz, J., Dziewirska, E., Radwan, M. & Hanke, W. Air pollution from natural and anthropic sources and male fertility. Reprod. Biol. Endocrinol. 16, 109 (2018).
pubmed: 30579357
pmcid: 6304234
doi: 10.1186/s12958-018-0430-2
Lafuente, R., Garcia-Blaquez, N., Jacquemin, B. & Checa, M. A. Outdoor air pollution and sperm quality. Fertil. Steril. 106, 880–896 (2016).
pubmed: 27565259
doi: 10.1016/j.fertnstert.2016.08.022
Rubes, J. et al. Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum. Reprod. 20, 2776–2783 (2005).
pubmed: 15980006
doi: 10.1093/humrep/dei122
Goldstone, A. E., Chen, Z., Perry, M. J., Kannan, K. & Louis, G. M. Urinary bisphenol A and semen quality, the LIFE Study. Reprod. Toxicol. 51, 7–13 (2015).
pubmed: 25462789
doi: 10.1016/j.reprotox.2014.11.003
Harchegani, A. B. et al. Mechanisms of diazinon effects on impaired spermatogenesis and male infertility. Toxicol. Ind. Health 34, 653–664 (2018).
pubmed: 29996728
doi: 10.1177/0748233718778665
Pan, Y. et al. Association between phthalate metabolites and biomarkers of reproductive function in 1066 Chinese men of reproductive age. J. Hazard Mater. 300, 729–736 (2015).
pubmed: 26296076
doi: 10.1016/j.jhazmat.2015.08.011
Zamkowska, D., Karwacka, A., Jurewicz, J. & Radwan, M. Environmental exposure to non-persistent endocrine disrupting chemicals and semen quality: An overview of the current epidemiological evidence. Int. J. Occup. Med. Environ. Health 31, 377–414 (2018).
pubmed: 30160090
Santi, D., Spaggiari, G. & Simoni, M. Sperm DNA fragmentation index as a promising predictive tool for male infertility diagnosis and treatment management - meta-analyses. Reprod. Biomed. Online 37, 315–326 (2018).
pubmed: 30314886
doi: 10.1016/j.rbmo.2018.06.023
Coughlan, C. et al. Sperm DNA fragmentation, recurrent implantation failure and recurrent miscarriage. Asian J. Androl. 17, 681–685 (2015).
pubmed: 25814156
pmcid: 4492063
doi: 10.4103/1008-682X.144946
Robinson, L. et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum. Reprod. 27, 2908–2917 (2012).
pubmed: 22791753
doi: 10.1093/humrep/des261
Osman, A., Alsomait, H., Seshadri, S., El-Toukhy, T. & Khalaf, Y. The effect of sperm DNA fragmentation on live birth rate after IVF or ICSI: a systematic review and meta-analysis. Reprod. Biomed. Online 30, 120–127 (2015).
pubmed: 25530036
doi: 10.1016/j.rbmo.2014.10.018
Belva, F. et al. Semen quality of young adult ICSI offspring: the first results. Hum. Reprod. 31, 2811–2820 (2016).
pubmed: 27707840
doi: 10.1093/humrep/dew245
Practice Committee of American Society for Reproductive Medicine; Practice Committee of Society for Assisted Reproductive Technology. Genetic considerations related to intracytoplasmic sperm injection (ICSI). Fertil. Steril. 90, S182–184 (2008).
doi: 10.1016/j.fertnstert.2008.08.048
Raad, G. et al. Paternal obesity: how bad is it for sperm quality and progeny health? Basic Clin. Androl. 27, 20 (2017).
pubmed: 29123667
pmcid: 5657098
doi: 10.1186/s12610-017-0064-9
Fullston, T. et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 27, 4226–4243 (2013).
pubmed: 23845863
doi: 10.1096/fj.12-224048
McPherson, N. O., Owens, J. A., Fullston, T. & Lane, M. Preconception diet or exercise intervention in obese fathers normalizes sperm microRNA profile and metabolic syndrome in female offspring. Am. J. Physiol. Endocrinol. Metab. 308, E805–E821 (2015).
pubmed: 25690453
doi: 10.1152/ajpendo.00013.2015
Dias, B. G. & Ressler, K. J. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 17, 89–96 (2014).
pubmed: 24292232
doi: 10.1038/nn.3594
Manikkam, M., Tracey, R., Guerrero-Bosagna, C. & Skinner, M. K. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS ONE 8, e55387 (2013).
pubmed: 23359474
pmcid: 3554682
doi: 10.1371/journal.pone.0055387
Aitken, R. J. & De Iuliis, G. N. On the possible origins of DNA damage in human spermatozoa. Mol. Hum. Reprod. 16, 3–13 (2010).
pubmed: 19648152
doi: 10.1093/molehr/gap059
Sakkas, D. & Alvarez, J. G. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil. Steril. 93, 1027–1036 (2010).
pubmed: 20080235
doi: 10.1016/j.fertnstert.2009.10.046
Gonzalez-Marin, C., Gosalvez, J. & Roy, R. Types, causes, detection and repair of DNA fragmentation in animal and human sperm cells. Int. J. Mol. Sci. 13, 14026–14052 (2012).
pubmed: 23203048
pmcid: 3509564
doi: 10.3390/ijms131114026
Delbes, G., Hales, B. F. & Robaire, B. Toxicants and human sperm chromatin integrity. Mol. Hum. Reprod. 16, 14–22 (2010).
pubmed: 19812089
doi: 10.1093/molehr/gap087
Donkin, I. & Barres, R. Sperm epigenetics and influence of environmental factors. Mol. Metab. 14, 1–11 (2018).
pubmed: 29525406
pmcid: 6034033
doi: 10.1016/j.molmet.2018.02.006
Godmann, M., Lambrot, R. & Kimmins, S. The dynamic epigenetic program in male germ cells: Its role in spermatogenesis, testis cancer, and its response to the environment. Microsc Res. Tech. 72, 603–619 (2009).
pubmed: 19319879
doi: 10.1002/jemt.20715
Muratori, M. & De Geyter, C. Chromatin condensation, fragmentation of DNA and differences in the epigenetic signature of infertile men. Best Pract. Res. Clin. Endocrinol Metab https://doi.org/10.1016/j.beem.2018.10.004 (2018).
Wyck, S. et al. Oxidative stress in sperm affects the epigenetic reprogramming in early embryonic development. Epigenetics Chromatin 11, 60 (2018).
pubmed: 30333056
pmcid: 6192351
doi: 10.1186/s13072-018-0224-y
Wang, S. Y. et al. Hypoxia causes transgenerational impairments in reproduction of fish. Nat. Commun. 7, 12114 (2016).
pubmed: 27373813
pmcid: 4932196
doi: 10.1038/ncomms12114
Gavriliouk, D. & Aitken, R. J. Damage to sperm DNA mediated by reactive oxygen species: its impact on human reproduction and the health trajectory of offspring. Adv. Exp. Med. Biol. 868, 23–47 (2015).
pubmed: 26178844
doi: 10.1007/978-3-319-18881-2_2
Ji, B. T. et al. Paternal cigarette smoking and the risk of childhood cancer among offspring of nonsmoking mothers. J. Natl Cancer Inst. 89, 238–244 (1997).
pubmed: 9017004
doi: 10.1093/jnci/89.3.238
Kundakovic, M. & Jaric, I. The epigenetic link between prenatal adverse environments and neurodevelopmental disorders. Genes 8, https://doi.org/10.3390/genes8030104 (2017).
Perera, F. & Herbstman, J. Prenatal environmental exposures, epigenetics, and disease. Reprod. Toxicol. 31, 363–373 (2011).
pubmed: 21256208
pmcid: 3171169
doi: 10.1016/j.reprotox.2010.12.055
Ho, L. & Crabtree, G. R. Chromatin remodelling during development. Nature 463, 474–484 (2010).
pubmed: 20110991
pmcid: 3060774
doi: 10.1038/nature08911
Leitch, H. G., Tang, W. W. & Surani, M. A. Primordial germ-cell development and epigenetic reprogramming in mammals. Curr. Top. Dev. Biol. 104, 149–187 (2013).
pubmed: 23587241
doi: 10.1016/B978-0-12-416027-9.00005-X
Kiefer, J. C. Epigenetics in development. Dev. Dyn. 236, 1144–1156 (2007).
pubmed: 17304537
doi: 10.1002/dvdy.21094
Heindel, J. J. & Vandenberg, L. N. Developmental origins of health and disease: a paradigm for understanding disease cause and prevention. Curr. Opin. Pediatr. 27, 248–253 (2015).
pubmed: 25635586
pmcid: 4535724
doi: 10.1097/MOP.0000000000000191
Rojas, D. et al. Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol. Sci. 143, 97–106 (2015).
pubmed: 25304211
doi: 10.1093/toxsci/kfu210
Breton, C. V. et al. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am. J. Respir. Crit. Care Med. 180, 462–467 (2009).
pubmed: 19498054
pmcid: 2742762
doi: 10.1164/rccm.200901-0135OC
Felix, J. F. et al. Cohort profile: pregnancy and childhood epigenetics (PACE) consortium. Int. J. Epidemiol. 47, 22–23u (2018).
pubmed: 29025028
doi: 10.1093/ije/dyx190
Fry, R. C. et al. Activation of inflammation/NF-kappaB signaling in infants born to arsenic-exposed mothers. PLoS Genet. 3, e207 (2007).
pubmed: 18039032
pmcid: 2082467
doi: 10.1371/journal.pgen.0030207
Gruzieva, O. et al. Epigenome-wide meta-analysis of methylation in children related to prenatal NO
pubmed: 27448387
doi: 10.1289/EHP36
Gruzieva, O. et al. Prenatal particulate air pollution and DNA methylation in newborns: an epigenome-wide meta-analysis. Environ. Health Perspect. 127, 57012 (2019).
pubmed: 31148503
doi: 10.1289/EHP4522
Herbstman, J., Tang, D., Zhu, D. & Perera, F. Prenatal exposure to polycyclic aromatic hydrocarbons and CPG methylation. Epidemiology 20, S93 (2009).
doi: 10.1097/01.ede.0000362991.36685.80
Howe, C. G. et al. Maternal gestational diabetes mellitus and newborn DNA methylation: findings from the pregnancy and childhood Epigenetics Consortium. Diabetes Care 43, 98–105 (2020).
pubmed: 31601636
doi: 10.2337/dc19-0524
Joubert, B. R. et al. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am. J. Hum. Genet. 98, 680–696 (2016).
pubmed: 27040690
pmcid: 4833289
doi: 10.1016/j.ajhg.2016.02.019
Kazmi, N. et al. Hypertensive disorders of pregnancy and DNA methylation in newborns. Hypertension 74, 375–383 (2019).
pubmed: 31230546
doi: 10.1161/HYPERTENSIONAHA.119.12634
Küpers, L. K. et al. Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight. Nat. Commun. 10, 1893 (2019).
pubmed: 31015461
pmcid: 6478731
doi: 10.1038/s41467-019-09671-3
Merid, S. K. et al. Epigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age. Genome Med 12, 25 (2020).
pubmed: 32114984
pmcid: 7050134
doi: 10.1186/s13073-020-0716-9
Reese, S. E. et al. Epigenome-wide meta-analysis of DNA methylation and childhood asthma. J. Allergy Clin. Immunol. 143, 2062–2074 (2019).
pubmed: 30579849
doi: 10.1016/j.jaci.2018.11.043
Sharp, G. C. et al. Maternal alcohol consumption and offspring DNA methylation: findings from six general population-based birth cohorts. Epigenomics 10, 27–42 (2018).
pubmed: 29172695
doi: 10.2217/epi-2017-0095
Sharp, G. C. et al. Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: findings from the pregnancy and childhood epigenetics (PACE) consortium. Hum. Mol. Genet. 26, 4067–4085 (2017).
pubmed: 29016858
pmcid: 5656174
doi: 10.1093/hmg/ddx290
Sikdar, S. et al. Comparison of smoking-related DNA methylation between newborns from prenatal exposure and adults from personal smoking. Epigenomics 11, 1487–1500 (2019).
pubmed: 31536415
pmcid: 6836223
doi: 10.2217/epi-2019-0066
Hackett, J. A. et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339, 448–452 (2013).
pubmed: 23223451
doi: 10.1126/science.1229277
Spadafora, C. Transgenerational epigenetic reprogramming of early embryos: a mechanistic model. Environ. Epigenet 6, dvaa009 (2020).
pubmed: 32704385
pmcid: 7368376
doi: 10.1093/eep/dvaa009
Banik, A. et al. Maternal factors that induce epigenetic changes contribute to neurological disorders in offspring. Genes https://doi.org/10.3390/genes8060150 (2017).
Bellinger, D. C. Prenatal exposures to environmental chemicals and Children’s Neurodevelopment: An Update. Saf. Health Work 4, 1–11 (2013).
pubmed: 23515885
pmcid: 3601292
doi: 10.5491/SHAW.2013.4.1.1
Indrio, F. et al. Epigenetic matters: the link between early nutrition, microbiome, and long-term health development. Front Pediatr. 5, 178 (2017).
pubmed: 28879172
pmcid: 5572264
doi: 10.3389/fped.2017.00178
Ma, R. C., Tutino, G. E., Lillycrop, K. A., Hanson, M. A. & Tam, W. H. Maternal diabetes, gestational diabetes and the role of epigenetics in their long term effects on offspring. Prog. Biophys. Mol. Biol. 118, 55–68 (2015).
pubmed: 25792090
doi: 10.1016/j.pbiomolbio.2015.02.010
Nemoda, Z. & Szyf, M. Epigenetic Alterations and Prenatal Maternal Depression. Birth Defects Res. 109, 888–897 (2017).
pubmed: 28714605
doi: 10.1002/bdr2.1081
Sanders, A. P. et al. Cadmium exposure and the epigenome: exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs. Epigenetics 9, 212–221 (2014).
pubmed: 24169490
doi: 10.4161/epi.26798
Curley, J. P., Mashoodh, R. & Champagne, F. A. Epigenetics and the origins of paternal effects. Horm. Behav. 59, 306–314 (2011).
pubmed: 20620140
doi: 10.1016/j.yhbeh.2010.06.018
Schmidt, C. W. Chips off the old block: how a father’s preconception exposures might affect the health of his children. Environ. Health Perspect. 126, 022001 (2018).
pubmed: 29398654
pmcid: 6066336
doi: 10.1289/EHP2348
Bakulski, K. M. & Fallin, M. D. Epigenetic epidemiology: promises for public health research. Environ. Mol. Mutagen 55, 171–183 (2014).
pubmed: 24449392
pmcid: 4011487
doi: 10.1002/em.21850
Ladd-Acosta, C. & Fallin, M. D. The role of epigenetics in genetic and environmental epidemiology. Epigenomics 8, 271–283 (2016).
pubmed: 26505319
doi: 10.2217/epi.15.102
Marques, A. H., O’Connor, T. G., Roth, C., Susser, E. & Bjorke-Monsen, A. L. The influence of maternal prenatal and early childhood nutrition and maternal prenatal stress on offspring immune system development and neurodevelopmental disorders. Front Neurosci. 7, 120 (2013).
pubmed: 23914151
pmcid: 3728489
doi: 10.3389/fnins.2013.00120
Vickers, M. H. Early life nutrition, epigenetics and programming of later life disease. Nutrients 6, 2165–2178 (2014).
pubmed: 24892374
pmcid: 4073141
doi: 10.3390/nu6062165
Krauss-Etschmann, S., Meyer, K. F., Dehmel, S. & Hylkema, M. N. Inter- and transgenerational epigenetic inheritance: evidence in asthma and COPD? Clin. Epigenetics 7, 53 (2015).
pubmed: 26052354
pmcid: 4456695
doi: 10.1186/s13148-015-0085-1
Babenko, O., Kovalchuk, I. & Metz, G. A. Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neurosci. Biobehav Rev. 48, 70–91 (2015).
pubmed: 25464029
doi: 10.1016/j.neubiorev.2014.11.013
Borge, T. C., Aase, H., Brantsaeter, A. L. & Biele, G. The importance of maternal diet quality during pregnancy on cognitive and behavioural outcomes in children: a systematic review and meta-analysis. BMJ Open 7, e016777 (2017).
pubmed: 28947450
pmcid: 5623570
doi: 10.1136/bmjopen-2017-016777
Norouzitallab, P., Baruah, K., Vanrompay, D. & Bossier, P. Can epigenetics translate environmental cues into phenotypes? Sci. Total Environ. 647, 1281–1293 (2019).
pubmed: 30180336
doi: 10.1016/j.scitotenv.2018.08.063
Blumer, N., Herz, U., Wegmann, M. & Renz, H. Prenatal lipopolysaccharide-exposure prevents allergic sensitization and airway inflammation, but not airway responsiveness in a murine model of experimental asthma. Clin. Exp. Allergy 35, 397–402 (2005).
pubmed: 15784121
doi: 10.1111/j.1365-2222.2005.02184.x
Blacquiere, M. J. et al. Maternal smoking during pregnancy induces airway remodelling in mice offspring. Eur. Respir. J. 33, 1133–1140 (2009).
pubmed: 19129273
doi: 10.1183/09031936.00129608
Wongtrakool, C., Wang, N., Hyde, D. M., Roman, J. & Spindel, E. R. Prenatal nicotine exposure alters lung function and airway geometry through alpha7 nicotinic receptors. Am. J. Respir. Cell Mol. Biol. 46, 695–702 (2012).
pubmed: 22246862
pmcid: 3359906
doi: 10.1165/rcmb.2011-0028OC
Rehan, V. K. et al. Perinatal nicotine exposure induces asthma in second generation offspring. BMC Med. 10, 129 (2012).
pubmed: 23106849
pmcid: 3568737
doi: 10.1186/1741-7015-10-129
Niedzwiecki, M. et al. Prenatal exposure to allergen, DNA methylation, and allergy in grandoffspring mice. Allergy 67, 904–910 (2012).
pubmed: 22583153
doi: 10.1111/j.1398-9995.2012.02841.x
Manners, S., Alam, R., Schwartz, D. A. & Gorska, M. M. A mouse model links asthma susceptibility to prenatal exposure to diesel exhaust. J. Allergy Clin. Immunol. 134, 63–72 (2014).
pubmed: 24365139
doi: 10.1016/j.jaci.2013.10.047
Lim, R., Fedulov, A. V. & Kobzik, L. Maternal stress during pregnancy increases neonatal allergy susceptibility: role of glucocorticoids. Am. J. Physiol. Lung Cell Mol. Physiol. 307, L141–L148 (2014).
pubmed: 24838749
pmcid: 4101791
doi: 10.1152/ajplung.00250.2013
Richgels, P. K., Yamani, A., Chougnet, C. A. & Lewkowich, I. P. Maternal house dust mite exposure during pregnancy enhances severity of house dust mite-induced asthma in murine offspring. J. Allergy Clin. Immunol. 140, 1404–1415 e1409 (2017).
pubmed: 28192144
pmcid: 5550362
doi: 10.1016/j.jaci.2016.12.972
Singh, S. P. et al. Prenatal secondhand cigarette smoke promotes Th2 polarization and impairs goblet cell differentiation and airway mucus formation. J. Immunol. 187, 4542–4552 (2011).
pubmed: 21930963
doi: 10.4049/jimmunol.1101567
Singh, S. P. et al. Gestational Exposure to Sidestream (Secondhand) Cigarette Smoke Promotes Transgenerational Epigenetic Transmission of Exacerbated Allergic Asthma and Bronchopulmonary Dysplasia. J. Immunol. 198, 3815–3822 (2017).
pubmed: 28381639
doi: 10.4049/jimmunol.1700014
Joad, J. P., Ji, C., Kott, K. S., Bric, J. M. & Pinkerton, K. E. In utero and postnatal effects of sidestream cigarette smoke exposure on lung function, hyperresponsiveness, and neuroendocrine cells in rats. Toxicol. Appl Pharm. 132, 63–71 (1995).
doi: 10.1006/taap.1995.1087
Singh, S. P. et al. Prenatal cigarette smoke decreases lung cAMP and increases airway hyperresponsiveness. Am. J. Respir. Crit. Care Med. 168, 342–347 (2003).
pubmed: 12791581
doi: 10.1164/rccm.200211-1262OC
Ji, C. M., Plopper, C. G., Witschi, H. P. & Pinkerton, K. E. Exposure to sidestream cigarette smoke alters bronchiolar epithelial cell differentiation in the postnatal rat lung. Am. J. Respir. Cell Mol. Biol. 11, 312–320 (1994).
pubmed: 8086168
doi: 10.1165/ajrcmb.11.3.8086168
Ji, C. M. et al. Maternal exposure to environmental tobacco smoke alters Clara cell secretory protein expression in fetal rat lung. Am. J. Physiol. 275, L870–L876 (1998).
pubmed: 9815103
Blacquiere, M. J. et al. Maternal smoking during pregnancy decreases Wnt signalling in neonatal mice. Thorax 65, 553–554 (2010).
pubmed: 20522857
doi: 10.1136/thx.2009.120154
Rouse, R. L., Boudreaux, M. J. & Penn, A. L. In utero environmental tobacco smoke exposure alters gene expression in lungs of adult BALB/c mice. Environ. Health Perspect. 115, 1757–1766 (2007).
pubmed: 18087596
pmcid: 2137099
doi: 10.1289/ehp.10358
Nygaard, U. C., Hansen, J. S., Groeng, E. C., Melkild, I. & Lovik, M. Suppression of allergen-specific IgE in offspring after preconceptional immunisation: maternal, paternal and genetic influences. Scand. J. Immunol. 77, 92–103 (2013).
pubmed: 23298180
doi: 10.1111/sji.12017
Fedulov, A. V. & Kobzik, L. Allergy risk is mediated by dendritic cells with congenital epigenetic changes. Am. J. Respir. Cell Mol. Biol. 44, 285–292 (2011).
pubmed: 20118218
doi: 10.1165/rcmb.2009-0400OC
Lenberg, J., Qian, Q., Sun, Z., Alam, R. & Gorska, M. M. Pre-pregnancy exposure to diesel exhaust predisposes offspring to asthma through IL-1beta and IL-17A. J. Allergy Clin. Immunol. 141, 1118–1122 e1113 (2018).
pubmed: 28943469
doi: 10.1016/j.jaci.2017.09.002
Rehan, V. K., Liu, J., Sakurai, R. & Torday, J. S. Perinatal nicotine-induced transgenerational asthma. Am. J. Physiol. Lung Cell Mol. Physiol. 305, L501–L507 (2013).
pubmed: 23911437
pmcid: 3798762
doi: 10.1152/ajplung.00078.2013
Gregory, D. J., Kobzik, L., Yang, Z., McGuire, C. C. & Fedulov, A. V. Transgenerational transmission of asthma risk after exposure to environmental particles during pregnancy. Am. J. Physiol. Lung Cell Mol. Physiol. 313, L395–l405 (2017).
pubmed: 28495853
pmcid: 5582941
doi: 10.1152/ajplung.00035.2017
Perez, M. F. & Lehner, B. Intergenerational and transgenerational epigenetic inheritance in animals. Nat. Cell Biol. 21, 143–151 (2019).
pubmed: 30602724
doi: 10.1038/s41556-018-0242-9
Morkve Knudsen, T. et al. Transgenerational and intergenerational epigenetic inheritance in allergic diseases. J. Allergy Clin. Immunol. 142, 765–772 (2018).
pubmed: 30040975
doi: 10.1016/j.jaci.2018.07.007
Mahmood, S., Smiraglia, D. J., Srinivasan, M. & Patel, M. S. Epigenetic changes in hypothalamic appetite regulatory genes may underlie the developmental programming for obesity in rat neonates subjected to a high-carbohydrate dietary modification. J. Dev. Orig. Health Dis. 4, 479–490 (2013).
pubmed: 24924227
doi: 10.1017/S2040174413000238
Segovia, S. A., Vickers, M. H., Zhang, X. D., Gray, C. & Reynolds, C. M. Maternal supplementation with conjugated linoleic acid in the setting of diet-induced obesity normalises the inflammatory phenotype in mothers and reverses metabolic dysfunction and impaired insulin sensitivity in offspring. J. Nutr. Biochem. 26, 1448–1457 (2015).
pubmed: 26318151
doi: 10.1016/j.jnutbio.2015.07.013
Camilleri-Carter, T. L., Dowling, D. K., R, L. R. & Piper, M. D. W. Transgenerational obesity and healthy aging in drosophila. J. Gerontol. A Biol. Sci. Med. Sci. 74, 1582–1589 (2019).
pubmed: 31231757
doi: 10.1093/gerona/glz154
Lagisz, M. et al. Transgenerational effects of caloric restriction on appetite: a meta-analysis. Obes. Rev. 15, 294–309 (2014).
pubmed: 24387308
doi: 10.1111/obr.12138
Vickers, M. H. Developmental programming and transgenerational transmission of obesity. Ann. Nutr. Metab. 64, 26–34 (2014).
pubmed: 25059803
doi: 10.1159/000360506
Wu, Q. & Suzuki, M. Parental obesity and overweight affect the body-fat accumulation in the offspring: the possible effect of a high-fat diet through epigenetic inheritance. Obes. Rev. 7, 201–208 (2006).
pubmed: 16629875
doi: 10.1111/j.1467-789X.2006.00232.x
Masuyama, H., Mitsui, T., Nobumoto, E. & Hiramatsu, Y. The effects of high-fat diet exposure in utero on the obesogenic and diabetogenic traits through epigenetic changes in adiponectin and leptin gene expression for multiple generations in female mice. Endocrinology 156, 2482–2491 (2015).
pubmed: 25853666
doi: 10.1210/en.2014-2020
Jimenez-Chillaron, J. C., Ramon-Krauel, M., Ribo, S. & Diaz, R. Transgenerational epigenetic inheritance of diabetes risk as a consequence of early nutritional imbalances. Proc. Nutr. Soc. 75, 78–89 (2016).
pubmed: 26573376
doi: 10.1017/S0029665115004231
Zambrano, E. et al. Sex differences in transgenerational alterations of growth and metabolism in progeny (F2) of female offspring (F1) of rats fed a low protein diet during pregnancy and lactation. J. Physiol. 566, 225–236 (2005).
pubmed: 15860532
pmcid: 1464716
doi: 10.1113/jphysiol.2005.086462
Dunn, G. A. & Bale, T. L. Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology 152, 2228–2236 (2011).
pubmed: 21447631
pmcid: 3100614
doi: 10.1210/en.2010-1461
Dunn, G. A. & Bale, T. L. Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 150, 4999–5009 (2009).
pubmed: 19819967
pmcid: 2775990
doi: 10.1210/en.2009-0500
Chamorro-Garcia, R. & Blumberg, B. Transgenerational effects of obesogens and the obesity epidemic. Curr. Opin. Pharm. 19, 153–158 (2014).
doi: 10.1016/j.coph.2014.10.010
Tracey, R., Manikkam, M., Guerrero-Bosagna, C. & Skinner, M. K. Hydrocarbons (jet fuel JP-8) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. Reprod. Toxicol. 36, 104–116 (2013).
pubmed: 23453003
pmcid: 3587983
doi: 10.1016/j.reprotox.2012.11.011
Kubsad, D. et al. Assessment of glyphosate induced epigenetic transgenerational inheritance of pathologies and sperm epimutations: generational toxicology. Sci. Rep. 9, 6372 (2019).
pubmed: 31011160
pmcid: 6476885
doi: 10.1038/s41598-019-42860-0
Skinner, M. K. et al. Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity. BMC Med. 11, 228 (2013).
pubmed: 24228800
pmcid: 3853586
doi: 10.1186/1741-7015-11-228
Chamorro-Garcia, R. et al. Transgenerational inheritance of increased fat depot size, stem cell reprogramming, and hepatic steatosis elicited by prenatal exposure to the obesogen tributyltin in mice. Environ. Health Perspect. 121, 359–366 (2013).
pubmed: 23322813
pmcid: 3621201
doi: 10.1289/ehp.1205701
Chamorro-Garcia, R. et al. Ancestral perinatal obesogen exposure results in a transgenerational thrifty phenotype in mice. Nat. Commun. 8, 2012 (2017).
pubmed: 29222412
pmcid: 5722856
doi: 10.1038/s41467-017-01944-z
Camsari, C. et al. Transgenerational effects of periconception heavy metal administration on adipose weight and glucose homeostasis in mice at maturity. Toxicol. Sci. 168, 610–619 (2019).
pubmed: 30629257
doi: 10.1093/toxsci/kfz008
Manikkam, M., Haque, M. M., Guerrero-Bosagna, C., Nilsson, E. E. & Skinner, M. K. Pesticide methoxychlor promotes the epigenetic transgenerational inheritance of adult-onset disease through the female germline. PLoS ONE 9, e102091 (2014).
pubmed: 25057798
pmcid: 4109920
doi: 10.1371/journal.pone.0102091
Guerrero-Bosagna, C., Weeks, S. & Skinner, M. K. Identification of genomic features in environmentally induced epigenetic transgenerational inherited sperm epimutations. PLoS ONE 9, e100194 (2014).
pubmed: 24937757
pmcid: 4061094
doi: 10.1371/journal.pone.0100194
King, S. E. et al. Sperm epimutation biomarkers of obesity and pathologies following DDT induced epigenetic transgenerational inheritance of disease. Environ. Epigenet 5, dvz008 (2019).
pubmed: 31186947
pmcid: 6536675
doi: 10.1093/eep/dvz008
Ben Maamar, M., King, S. E., Nilsson, E., Beck, D. & Skinner, M. K. Epigenetic transgenerational inheritance of parent-of-origin allelic transmission of outcross pathology and sperm epimutations. Dev. Biol. 458, 106–119 (2020).
pubmed: 31682807
doi: 10.1016/j.ydbio.2019.10.030
Ding, G. L. et al. Transgenerational glucose intolerance with Igf2/H19 epigenetic alterations in mouse islet induced by intrauterine hyperglycemia. Diabetes 61, 1133–1142 (2012).
pubmed: 22447856
pmcid: 3331740
doi: 10.2337/db11-1314
Lee, M. K. & Blumberg, B. Transgenerational effects of obesogens. Basic Clin. Pharm. Toxicol. 125(Suppl 3), 44–57 (2019).
doi: 10.1111/bcpt.13214
Drake, A. J., Liu, L., Kerrigan, D., Meehan, R. R. & Seckl, J. R. Multigenerational programming in the glucocorticoid programmed rat is associated with generation-specific and parent of origin effects. Epigenetics 6, 1334–1343 (2011).
pubmed: 22086116
doi: 10.4161/epi.6.11.17942
Bohacek, J. et al. Pathological brain plasticity and cognition in the offspring of males subjected to postnatal traumatic stress. Mol. Psychiatry 20, 621–631 (2015).
pubmed: 25092246
doi: 10.1038/mp.2014.80
Cirulli, F., Musillo, C. & Berry, A. Maternal obesity as a risk factor for brain development and mental health in the offspring. Neuroscience, https://doi.org/10.1016/j.neuroscience.2020.01.023 (2020).
Buck, J. M., O’Neill, H. C. & Stitzel, J. A. Developmental nicotine exposure engenders intergenerational downregulation and aberrant posttranslational modification of cardinal epigenetic factors in the frontal cortices, striata, and hippocampi of adolescent mice. Epigenetics Chromatin 13, 13 (2020).
pubmed: 32138755
pmcid: 7059320
doi: 10.1186/s13072-020-00332-0
Rodgers, A. B., Morgan, C. P., Leu, N. A. & Bale, T. L. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc. Natl Acad. Sci. USA 112, 13699–13704 (2015).
pubmed: 26483456
doi: 10.1073/pnas.1508347112
pmcid: 4640733
Gapp, K. et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667–669 (2014).
pubmed: 24728267
pmcid: 4333222
doi: 10.1038/nn.3695
Gapp, K. et al. Early life stress in fathers improves behavioural flexibility in their offspring. Nat. Commun. 5, 5466 (2014).
pubmed: 25405779
doi: 10.1038/ncomms6466
Rodgers, A. B., Morgan, C. P., Bronson, S. L., Revello, S. & Bale, T. L. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J. Neurosci. 33, 9003–9012 (2013).
pubmed: 23699511
pmcid: 3712504
doi: 10.1523/JNEUROSCI.0914-13.2013
Holloway, Z. R. et al. Paternal factors in neurodevelopmental toxicology: THC exposure of male rats causes long-lasting neurobehavioral effects in their offspring. Neurotoxicology 78, 57–63 (2020).
pubmed: 32045580
doi: 10.1016/j.neuro.2020.01.009
Valles, S. et al. Exposure to low doses of inorganic arsenic induces transgenerational changes on behavioral and epigenetic markers in zebrafish (Danio rerio). Toxicol. Appl Pharm. 396, 115002 (2020).
doi: 10.1016/j.taap.2020.115002
Meyer, D. N. et al. Developmental exposure to Pb(2+) induces transgenerational changes to zebrafish brain transcriptome. Chemosphere 244, 125527 (2020).
pubmed: 31816550
doi: 10.1016/j.chemosphere.2019.125527
Franklin, T. B. et al. Epigenetic transmission of the impact of early stress across generations. Biol. Psychiatry 68, 408–415 (2010).
pubmed: 20673872
doi: 10.1016/j.biopsych.2010.05.036
Dietz, D. M. et al. Paternal transmission of stress-induced pathologies. Biol. Psychiatry 70, 408–414 (2011).
pubmed: 21679926
pmcid: 3217197
doi: 10.1016/j.biopsych.2011.05.005
Posner, R. et al. Neuronal small rnas control behavior transgenerationally. Cell 177, 1814–1826 e1815 (2019).
pubmed: 31178120
pmcid: 6579485
doi: 10.1016/j.cell.2019.04.029
Weber-Stadlbauer, U. Epigenetic and transgenerational mechanisms in infection-mediated neurodevelopmental disorders. Transl. Psychiatry 7, e1113 (2017).
pubmed: 28463237
pmcid: 5534947
doi: 10.1038/tp.2017.78
Champagne, F. A. & Meaney, M. J. Transgenerational effects of social environment on variations in maternal care and behavioral response to novelty. Behav. Neurosci. 121, 1353–1363 (2007).
pubmed: 18085888
doi: 10.1037/0735-7044.121.6.1353
Curley, J. P., Davidson, S., Bateson, P. & Champagne, F. A. Social enrichment during postnatal development induces transgenerational effects on emotional and reproductive behavior in mice. Front Behav. Neurosci. 3, 25 (2009).
pubmed: 19826497
pmcid: 2759344
doi: 10.3389/neuro.08.025.2009
Sarker, G. & Peleg-Raibstein, D. Maternal overnutrition induces long-term cognitive deficits across several generations. Nutrients 11, https://doi.org/10.3390/nu11010007 (2018).
Wolstenholme, J. T. et al. Transgenerational bisphenol a causes deficits in social recognition and alters postsynaptic density genes in mice. Endocrinology 160, 1854–1867 (2019).
pubmed: 31188430
pmcid: 6637794
doi: 10.1210/en.2019-00196
Manners, M. T. et al. Transgenerational inheritance of chronic adolescent stress: effects of stress response and the amygdala transcriptome. Genes Brain Behav. 18, e12493 (2019).
pubmed: 29896789
doi: 10.1111/gbb.12493
Valerio, M. A., Andreski, P. M., Schoeni, R. F. & McGonagle, K. A. Examining the association between childhood asthma and parent and grandparent asthma status: implications for practice. Clin. Pediatr. 49, 535–541 (2010).
doi: 10.1177/0009922809356465
Garcia-Sanchez, A. et al. Genome-wide association studies (GWAS) and their importance in asthma. Allergol. Immunopathol.43, 601–608 (2015).
doi: 10.1016/j.aller.2014.07.004
Hemminki, K., Li, X., Sundquist, K. & Sundquist, J. Familial risks for asthma among twins and other siblings based on hospitalizations in Sweden. Clin. Exp. Allergy 37, 1320–1325 (2007).
pubmed: 17845412
doi: 10.1111/j.1365-2222.2007.02737.x
Toskala, E. & Kennedy, D. W. Asthma risk factors. Int Forum Allergy Rhinol. 5(Suppl 1), S11–S16 (2015).
pubmed: 26335830
pmcid: 7159773
doi: 10.1002/alr.21557
Ober, C. Asthma Genetics in the Post-GWAS Era. Ann. Am. Thorac. Soc. 13(Suppl 1), S85–S90 (2016).
pubmed: 27027959
pmcid: 5015734
doi: 10.1513/AnnalsATS.201507-459MG
Koinis Mitchell, D. & Murdock, K. K. Identifying risk and resource factors in children with asthma from urban settings: the context-health-development model. J. Asthma 42, 425–436 (2005).
pubmed: 16293537
doi: 10.1081/JAS-200067936
Kravitz-Wirtz, N. et al. Early-life air pollution exposure, neighborhood poverty, and childhood asthma in the united states, 1990(-)2014. Int J. Environ. Res. Public Health 15, https://doi.org/10.3390/ijerph15061114 (2018).
Li, Y. F., Langholz, B., Salam, M. T. & Gilliland, F. D. Maternal and grandmaternal smoking patterns are associated with early childhood asthma. Chest 127, 1232–1241 (2005).
pubmed: 15821200
Magnus, M. C. et al. Grandmother’s smoking when pregnant with the mother and asthma in the grandchild: the Norwegian Mother and Child Cohort Study. Thorax 70, 237–243 (2015).
pubmed: 25572596
doi: 10.1136/thoraxjnl-2014-206438
Accordini, S. et al. A three-generation study on the association of tobacco smoking with asthma. Int J. Epidemiol. 47, 1106–1117 (2018).
pubmed: 29534228
pmcid: 6124624
doi: 10.1093/ije/dyy031
Lodge, C. J. et al. Grandmaternal smoking increases asthma risk in grandchildren: A nationwide Swedish cohort. Clin. Exp. Allergy 48, 167–174 (2018).
pubmed: 28925522
doi: 10.1111/cea.13031
Miller, L. L., Henderson, J., Northstone, K., Pembrey, M. & Golding, J. Do grandmaternal smoking patterns influence the etiology of childhood asthma? Chest 145, 1213–1218 (2014).
pubmed: 24158349
doi: 10.1378/chest.13-1371
Braback, L. et al. Childhood asthma and smoking exposures before conception-A three-generational cohort study. Pediatr. Allergy Immunol. 29, 361–368 (2018).
pubmed: 29512835
doi: 10.1111/pai.12883
Arshad, S. H., Karmaus, W., Zhang, H. & Holloway, J. W. Multigenerational cohorts in patients with asthma and allergy. J. Allergy Clin. Immunol. 139, 415–421 (2017).
pubmed: 28183434
pmcid: 5308467
doi: 10.1016/j.jaci.2016.12.002
Joubert, B. R. et al. Maternal smoking and DNA methylation in newborns: in utero effect or epigenetic inheritance? Cancer Epidemiol. Biomark. Prev. 23, 1007–1017 (2014).
doi: 10.1158/1055-9965.EPI-13-1256
De Stavola, B. L., Leon, D. A. & Koupil, I. Intergenerational correlations in size at birth and the contribution of environmental factors: The Uppsala Birth Cohort Multigenerational Study, Sweden, 1915-2002. Am. J. Epidemiol. 174, 52–62 (2011).
pubmed: 21617260
doi: 10.1093/aje/kwr032
Lahti-Pulkkinen, M. et al. Intergenerational transmission of birth weight across 3 generations. Am. J. Epidemiol. 187, 1165–1173 (2018).
pubmed: 29087442
doi: 10.1093/aje/kwx340
Agha, G. et al. Birth weight-for-gestational age is associated with DNA methylation at birth and in childhood. Clin. Epigenetics 8, 118 (2016).
pubmed: 27891191
pmcid: 5112715
doi: 10.1186/s13148-016-0285-3
Tuscher, J. J. & Day, J. J. Multigenerational epigenetic inheritance: one step forward, two generations back. Neurobiol. Dis. 132, 104591 (2019).
pubmed: 31470104
doi: 10.1016/j.nbd.2019.104591
Lin, X. et al. Developmental pathways to adiposity begin before birth and are influenced by genotype, prenatal environment and epigenome. BMC Med. 15, 50 (2017).
pubmed: 28264723
pmcid: 5340003
doi: 10.1186/s12916-017-0800-1
Simpkin, A. J. et al. Longitudinal analysis of DNA methylation associated with birth weight and gestational age. Hum. Mol. Genet. 24, 3752–3763 (2015).
pubmed: 25869828
pmcid: 4459393
doi: 10.1093/hmg/ddv119
Cardenas, A. et al. Mediation by placental dna methylation of the association of prenatal maternal smoking and birth weight. Am. J. Epidemiol. 188, 1878–1886 (2019).
pubmed: 31497855
pmcid: 6825837
doi: 10.1093/aje/kwz184
Collins, J. W. Jr., David, R. J., Rankin, K. M. & Desireddi, J. R. Transgenerational effect of neighborhood poverty on low birth weight among African Americans in Cook County, Illinois. Am. J. Epidemiol. 169, 712–717 (2009).
pubmed: 19179359
doi: 10.1093/aje/kwn402
McFarland, M. J., McLanahan, S. S., Goosby, B. J. & Reichman, N. E. Grandparents’ education and infant health: pathways across generations. J. Marriage Fam. 79, 784–800 (2017).
pubmed: 28626244
doi: 10.1111/jomf.12383
Morton, S. M., De Stavola, B. L. & Leon, D. A. Intergenerational determinants of offspring size at birth: a life course and graphical analysis using the aberdeen children of the 1950s study (ACONF). Int J. Epidemiol. 43, 749–759 (2014).
pubmed: 24569382
doi: 10.1093/ije/dyu028
Agius, R., Savona-Ventura, C. & Vassallo, J. Transgenerational metabolic determinants of fetal birth weight. Exp. Clin. Endocrinol. Diabetes 121, 431–435 (2013).
pubmed: 23696478
doi: 10.1055/s-0033-1345121
Shen, Y. et al. Maternal birth weight and bmi mediate the transgenerational effect of grandmaternal bmi on grandchild’s birth weight. Obesity 28, 647–654 (2020).
pubmed: 32012478
doi: 10.1002/oby.22680
Rillamas-Sun, E., Harlow, S. D. & Randolph, J. F. Jr. Grandmothers’ smoking in pregnancy and grandchildren’s birth weight: comparisons by grandmother birth cohort. Matern Child Health J. 18, 1691–1698 (2014).
pubmed: 24337862
pmcid: 4058414
doi: 10.1007/s10995-013-1411-x
Ding, M. et al. Smoking during pregnancy in relation to grandchild birth weight and BMI trajectories. PLoS ONE 12, e0179368 (2017).
pubmed: 28700699
pmcid: 5507479
doi: 10.1371/journal.pone.0179368
Hypponen, E., Smith, G. D. & Power, C. Effects of grandmothers’ smoking in pregnancy on birth weight: intergenerational cohort study. BMJ 327, 898 (2003).
pubmed: 14563745
pmcid: 218811
doi: 10.1136/bmj.327.7420.898
Kaati, G., Bygren, L. O. & Edvinsson, S. Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur. J. Hum. Genet. 10, 682–688 (2002).
pubmed: 12404098
doi: 10.1038/sj.ejhg.5200859
Bygren, L. O. et al. Change in paternal grandmothers’ early food supply influenced cardiovascular mortality of the female grandchildren. BMC Genet. 15, 12 (2014).
pubmed: 24552514
pmcid: 3929550
doi: 10.1186/1471-2156-15-12
Li, J. et al. Prenatal exposure to famine and the development of hyperglycemia and type 2 diabetes in adulthood across consecutive generations: a population-based cohort study of families in Suihua, China. Am. J. Clin. Nutr. 105, 221–227 (2017).
pubmed: 27927634
doi: 10.3945/ajcn.116.138792
Heijmans, B. T. et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. USA 105, 17046–17049 (2008).
pubmed: 18955703
doi: 10.1073/pnas.0806560105
pmcid: 2579375
Brook, J. S., Zhang, C., Balka, E. B. & Brook, D. W. Pathways to children’s externalizing behavior: a three-generation study. J. Genet. Psychol. 173, 175–197 (2012).
pubmed: 22708480
pmcid: 3381645
doi: 10.1080/00221325.2011.594821
Bailey, J. A., Hill, K. G., Oesterle, S. & Hawkins, J. D. Linking substance use and problem behavior across three generations. J. Abnorm Child Psychol. 34, 263–292 (2006).
pubmed: 16752101
doi: 10.1007/s10802-006-9033-z
Bailey, J. A., Hill, K. G., Oesterle, S. & Hawkins, J. D. Parenting practices and problem behavior across three generations: monitoring, harsh discipline, and drug use in the intergenerational transmission of externalizing behavior. Dev. Psychol. 45, 1214–1226 (2009).
pubmed: 19702387
pmcid: 2766356
doi: 10.1037/a0016129
Gustavson, K. et al. Smoking in pregnancy and child ADHD. Pediatrics https://doi.org/10.1542/peds.2016-2509 (2017).
Golding, J. et al. Grand-maternal smoking in pregnancy and grandchild’s autistic traits and diagnosed autism. Sci. Rep. 7, 46179 (2017).
pubmed: 28448061
pmcid: 5407180
doi: 10.1038/srep46179
Perkins, H. W. and Berkowitz A. D. Collegiate COAs and alcohol abuse: problem drinking in relation to assessments of parent and grandparent alcoholism. J. Counseling Dev. 69, 237–240 (1991).
doi: 10.1002/j.1556-6676.1991.tb01495.x
Kendler, K. S., Ohlsson, H., Sundquist, J. & Sundquist, K. Transmission of alcohol use disorder across three generations: a Swedish National Study. Psychol. Med. 48, 33–42 (2018).
pubmed: 28956523
doi: 10.1017/S0033291717000794
Brown, S. A., Tate, S. R., Vik, P. W., Haas, A. L. & Aarons, G. A. Modeling of alcohol use mediates the effect of family history of alcoholism on adolescent alcohol expectancies. Exp. Clin. Psychopharmacol. 7, 20–27 (1999).
pubmed: 10036606
doi: 10.1037/1064-1297.7.1.20
Fuller, B. E. et al. Predictors of aggression across three generations among sons of alcoholics: relationships involving grandparental and parental alcoholism, child aggression, marital aggression and parenting practices. J. Stud. Alcohol 64, 472–483 (2003).
pubmed: 12921189
doi: 10.15288/jsa.2003.64.472
Pears, K., Capaldi, D. M. & Owen, L. D. Substance use risk across three generations: the roles of parent discipline practices and inhibitory control. Psychol. Addict. Behav. 21, 373–386 (2007).
pubmed: 17874888
pmcid: 1988842
doi: 10.1037/0893-164X.21.3.373
Valentine, G., Holloway, S. L. & Jayne, M. Generational patterns of alcohol consumption: continuity and change. Health Place 16, 916–925 (2010).
pubmed: 20541449
doi: 10.1016/j.healthplace.2010.05.003
Sagi-Schwartz, A., van IJzendoorn, M. H. & Bakermans-Kranenburg, M. J. Does intergenerational transmission of trauma skip a generation? No meta-analytic evidence for tertiary traumatization with third generation of Holocaust survivors. Attachment Hum. Dev. 10, 105–121 (2008).
doi: 10.1080/14616730802113661
de Quervain, D. J. et al. A deletion variant of the α2b-adrenoceptor is related to emotional memory in Europeans and Africans. Nat. Neurosci. 10, 1137 (2007).
pubmed: 17660814
doi: 10.1038/nn1945
van IJzendoorn, M. H., Bakermans-Kranenburg, M. J. & Sagi-Schwartz, A. Are children of Holocaust survivors less well-adapted? A meta-analytic investigation of secondary traumatization. J. Trauma Stress 16, 459–469 (2003).
pubmed: 14584630
doi: 10.1023/A:1025706427300
Eaton, W. W., Sigal, J. J. & Weinfeld, M. Impairment in Holocaust survivors after 33 years: data from an unbiased community sample. Am. J. Psychiatry 139, 773–777 (1982).
pubmed: 7081491
doi: 10.1176/ajp.139.6.773
Siegel, J. & Han, W. J. Family exposure to potentially traumatic events and chinese children’s psychological adjustment: a transgenerational study. J. Child Fam. Stud. 27, 431–442 (2017).
doi: 10.1007/s10826-017-0894-2
Perroud, N. et al. The Tutsi genocide and transgenerational transmission of maternal stress: epigenetics and biology of the HPA axis. World J. Biol. Psychiatry 15, 334–345 (2014).
pubmed: 24690014
doi: 10.3109/15622975.2013.866693
Bierer, L. M. et al. Intergenerational effects of maternal holocaust exposure on fkbp5 methylation. Am. J. Psychiatry 177, 744–753 (2020).
pubmed: 32312110
doi: 10.1176/appi.ajp.2019.19060618
McGee, G. et al. Methodological issues in population-based studies of multigenerational associations. American Journal of Epidemiology, https://doi.org/10.1093/aje/kwaa125 (2020).
Teh, A. L. et al. The effect of genotype and in utero environment on interindividual variation in neonate DNA methylomes. Genome Res. 24, 1064–1074 (2014).
pubmed: 24709820
pmcid: 4079963
doi: 10.1101/gr.171439.113
Cheng, T. L., Johnson, S. B. & Goodman, E. Breaking the intergenerational cycle of disadvantage: the three generation approach. Pediatrics 137, https://doi.org/10.1542/peds.2015-2467 (2016).
Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).
pubmed: 25693563
pmcid: 4530010
doi: 10.1038/nature14248
Birney, E., Smith, G. D. & Greally, J. M. Epigenome-wide association studies and the interpretation of disease -omics. PLoS Genet. 12, e1006105 (2016).
pubmed: 27336614
pmcid: 4919098
doi: 10.1371/journal.pgen.1006105
Hertz-Picciotto, I. et al. A prospective study of environmental exposures and early biomarkers in autism spectrum disorder: design, protocols, and preliminary data from the MARBLES study. Environ. Health Perspect. 126, 117004 (2018).
pubmed: 30465702
pmcid: 6371714
doi: 10.1289/EHP535
S, R. in Postgenomics Perspective on Biology after the Genome (ed Richardson S. and Stevens H.) 210–231 (Duke University Press, 2015).
CJ, W. Transgenerational tort liability for epigenetic disease. DePaul J. Health Care Law 13, 319–338 (2010).
Gillman, M. W. & Blaisdell, C. J. Environmental influences on child health outcomes, a research program of the national institutes of health. Curr. Opin. Pediatr. 30, 260–262 (2018).
pubmed: 29356702
pmcid: 6020137
doi: 10.1097/MOP.0000000000000600
Blackwell, C. K., Wakschlag, L. S., Gershon, R. C. & Cella, D., with the, E. P. R. O. C. Measurement framework for the environmental influences on child health outcomes research program. Curr. Opin. Pediatr. 30, 276–284 (2018).
pubmed: 29406440
pmcid: 6029724
doi: 10.1097/MOP.0000000000000606
Jacobson, L. P., Lau, B., Catellier, D. & Parker, C. B. An Environmental influences on child health outcomes viewpoint of data analysis centers for collaborative study designs. Curr. Opin. Pediatr. 30, 269–275 (2018).
pubmed: 29474274
pmcid: 5877813
doi: 10.1097/MOP.0000000000000602