Natural Killer Cells Are Present in Rag1


Journal

Translational stroke research
ISSN: 1868-601X
Titre abrégé: Transl Stroke Res
Pays: United States
ID NLM: 101517297

Informations de publication

Date de publication:
02 2022
Historique:
received: 24 11 2020
accepted: 27 05 2021
revised: 26 05 2021
pubmed: 10 6 2021
medline: 30 4 2022
entrez: 9 6 2021
Statut: ppublish

Résumé

Rag1

Identifiants

pubmed: 34105078
doi: 10.1007/s12975-021-00923-3
pii: 10.1007/s12975-021-00923-3
pmc: PMC8766401
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

197-211

Informations de copyright

© 2021. The Author(s).

Références

Hankey GJ. Secondary stroke prevention. Lancet Neurol. 2014;13(2):178–94. https://doi.org/10.1016/S1474-4422(13)70255-2 .
doi: 10.1016/S1474-4422(13)70255-2 pubmed: 24361114
Lammerding L, Slowik A, Johann S, Beyer C, Zendedel A. Poststroke inflammasome expression and regulation in the peri-infarct area by gonadal steroids after transient focal ischemia in the rat brain. Neuroendocrinology. 2016;103(5):460–75. https://doi.org/10.1159/000439435 .
doi: 10.1159/000439435 pubmed: 26337121
Schuhmann MK, Langhauser F, Kraft P, Kleinschnitz C. B cells do not have a major pathophysiologic role in acute ischemic stroke in mice. J Neuroinflammation. 2017;14(1):112. https://doi.org/10.1186/s12974-017-0890-x .
doi: 10.1186/s12974-017-0890-x pubmed: 28576128 pmcid: 5457733
Yilmaz G, Arumugam TV, Stokes KY, Granger DN. Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation. 2006;113(17):2105–12. https://doi.org/10.1161/CIRCULATIONAHA.105.593046 .
doi: 10.1161/CIRCULATIONAHA.105.593046 pubmed: 16636173
Kleinschnitz C, Schwab N, Kraft P, Hagedorn I, Dreykluft A, Schwarz T, et al. Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood. 2010;115(18):3835–42. https://doi.org/10.1182/blood-2009-10-249078 .
doi: 10.1182/blood-2009-10-249078 pubmed: 20215643
Zhou W, Liesz A, Bauer H, Sommer C, Lahrmann B, Valous N, et al. Postischemic brain infiltration of leukocyte subpopulations differs among murine permanent and transient focal cerebral ischemia models. Brain Pathol. 2013;23(1):34–44. https://doi.org/10.1111/j.1750-3639.2012.00614.x .
doi: 10.1111/j.1750-3639.2012.00614.x pubmed: 22775530
Gan Y, Liu Q, Wu W, Yin JX, Bai XF, Shen R, et al. Ischemic neurons recruit natural killer cells that accelerate brain infarction. Proc Natl Acad Sci U S A. 2014;111(7):2704–9. https://doi.org/10.1073/pnas.1315943111 .
doi: 10.1073/pnas.1315943111 pubmed: 24550298 pmcid: 3932858
De Raedt S, De Vos A, Van Binst AM, De Waele M, Coomans D, Buyl R, et al. High natural killer cell number might identify stroke patients at risk of developing infections. Neurol Neuroimmunol Neuroinflamm. 2015;2(2):e71. https://doi.org/10.1212/NXI.0000000000000071 .
doi: 10.1212/NXI.0000000000000071 pubmed: 25738168 pmcid: 4335818
Haeusler KG, Schmidt WU, Fohring F, Meisel C, Helms T, Jungehulsing GJ, et al. Cellular immunodepression preceding infectious complications after acute ischemic stroke in humans. Cerebrovasc Dis. 2008;25(1–2):50–8. https://doi.org/10.1159/000111499 .
doi: 10.1159/000111499 pubmed: 18033958
Zhang Y, Gao Z, Wang D, Zhang T, Sun B, Mu L, et al. Accumulation of natural killer cells in ischemic brain tissues and the chemotactic effect of IP-10. J Neuroinflammation. 2014;11:79. https://doi.org/10.1186/1742-2094-11-79 .
doi: 10.1186/1742-2094-11-79 pubmed: 24742325 pmcid: 4039314
Lunemann A, Lunemann JD, Roberts S, Messmer B, Barreira da Silva R, Raine CS, et al. Human NK cells kill resting but not activated microglia via NKG2D- and NKp46-mediated recognition. J Immunol. 2008;181(9):6170–7. https://doi.org/10.4049/jimmunol.181.9.6170 .
doi: 10.4049/jimmunol.181.9.6170 pubmed: 18941207
Li M, Li Z, Yao Y, Jin WN, Wood K, Liu Q, et al. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A. 2017;114(3):E396–405. https://doi.org/10.1073/pnas.1612930114 .
doi: 10.1073/pnas.1612930114 pubmed: 27994144
Chen C, Ai QD, Chu SF, Zhang Z, Chen NH. NK cells in cerebral ischemia. Biomed Pharmacother. 2019;109:547–54. https://doi.org/10.1016/j.biopha.2018.10.103 .
doi: 10.1016/j.biopha.2018.10.103 pubmed: 30399590
Narni-Mancinelli E, Vivier E, Kerdiles YM. The ‘T-cell-ness’ of NK cells: unexpected similarities between NK cells and T cells. Int Immunol. 2011;23(7):427–31. https://doi.org/10.1093/intimm/dxr035 .
doi: 10.1093/intimm/dxr035 pubmed: 21665959
Verneris MR, Karimi M, Baker J, Jayaswal A, Negrin RS. Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+ T cells. Blood. 2004;103(8):3065–72. https://doi.org/10.1182/blood-2003-06-2125 .
doi: 10.1182/blood-2003-06-2125 pubmed: 15070686
Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE. RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 1992;68(5):869–77.
doi: 10.1016/0092-8674(92)90030-G
Shinkai Y, Rathbun G, Lam KP, Oltz EM, Stewart V, Mendelsohn M, et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell. 1992;68(5):855–67. https://doi.org/10.1016/0092-8674(92)90029-c .
doi: 10.1016/0092-8674(92)90029-c pubmed: 1547487
Karo JM, Schatz DG, Sun JC. The RAG recombinase dictates functional heterogeneity and cellular fitness in natural killer cells. Cell. 2014;159(1):94–107. https://doi.org/10.1016/j.cell.2014.08.026 .
doi: 10.1016/j.cell.2014.08.026 pubmed: 25259923 pmcid: 4371485
Pearson T, Shultz LD, Miller D, King M, Laning J, Fodor W, et al. Non-obese diabetic-recombination activating gene-1 (NOD-Rag1 null) interleukin (IL)-2 receptor common gamma chain (IL2r gamma null) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clin Exp Immunol. 2008;154(2):270–84. https://doi.org/10.1111/j.1365-2249.2008.03753.x .
doi: 10.1111/j.1365-2249.2008.03753.x pubmed: 18785974 pmcid: 2612717
Chen J, Shinkai Y, Young F, Alt FW. Probing immune functions in RAG-deficient mice. Curr Opin Immunol. 1994;6(2):313–9.
doi: 10.1016/0952-7915(94)90107-4
Endres M, Engelhardt B, Koistinaho J, Lindvall O, Meairs S, Mohr JP, et al. Improving outcome after stroke: overcoming the translational roadblock. Cerebrovasc Dis. 2008;25(3):268–78. https://doi.org/10.1159/000118039 .
doi: 10.1159/000118039 pubmed: 18292653
Kraft P, Gob E, Schuhmann MK, Gobel K, Deppermann C, Thielmann I, et al. FTY720 ameliorates acute ischemic stroke in mice by reducing thrombo-inflammation but not by direct neuroprotection. Stroke. 2013;44(11):3202–10. https://doi.org/10.1161/STROKEAHA.113.002880 .
doi: 10.1161/STROKEAHA.113.002880 pubmed: 24029635
Junge CE, Sugawara T, Mannaioni G, Alagarsamy S, Conn PJ, Brat DJ, et al. The contribution of protease-activated receptor 1 to neuronal damage caused by transient focal cerebral ischemia. Proc Natl Acad Sci U S A. 2003;100(22):13019–24. https://doi.org/10.1073/pnas.2235594100 .
doi: 10.1073/pnas.2235594100 pubmed: 14559973 pmcid: 240737
Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke. 1986;17(3):472–6.
doi: 10.1161/01.STR.17.3.472
Moran PM, Higgins LS, Cordell B, Moser PC. Age-related learning deficits in transgenic mice expressing the 751-amino acid isoform of human beta-amyloid precursor protein. Proc Natl Acad Sci U S A. 1995;92(12):5341–5.
doi: 10.1073/pnas.92.12.5341
Stenstrom M, Skold M, Andersson A, Cardell SL. Natural killer T-cell populations in C57BL/6 and NK1.1 congenic BALB.NK mice-a novel thymic subset defined in BALB.NK mice. Immunology. 2005;114(3):336–45. https://doi.org/10.1111/j.1365-2567.2004.02111.x .
doi: 10.1111/j.1365-2567.2004.02111.x pubmed: 15720435 pmcid: 1782094
Mracsko E, Liesz A, Stojanovic A, Lou WP, Osswald M, Zhou W, et al. Antigen dependently activated cluster of differentiation 8-positive T cells cause perforin-mediated neurotoxicity in experimental stroke. J Neurosci. 2014;34(50):16784–95. https://doi.org/10.1523/JNEUROSCI.1867-14.2014 .
doi: 10.1523/JNEUROSCI.1867-14.2014 pubmed: 25505331 pmcid: 6608504
Ghasemi R, Lazear E, Wang X, Arefanian S, Zheleznyak A, Carreno BM, et al. Selective targeting of IL-2 to NKG2D bearing cells for improved immunotherapy. Nat Commun. 2016;7:12878. https://doi.org/10.1038/ncomms12878 .
doi: 10.1038/ncomms12878 pubmed: 27650575 pmcid: 5036003
Alter G, Malenfant JM, Altfeld M. CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods. 2004;294(1–2):15–22. https://doi.org/10.1016/j.jim.2004.08.008 .
doi: 10.1016/j.jim.2004.08.008 pubmed: 15604012
Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100(9):3175–82. https://doi.org/10.1182/blood-2001-12-0207 .
doi: 10.1182/blood-2001-12-0207 pubmed: 12384415
Stubbe T, Ebner F, Richter D, Engel O, Klehmet J, Royl G, et al. Regulatory T cells accumulate and proliferate in the ischemic hemisphere for up to 30 days after MCAO. J Cereb Blood Flow Metab. 2013;33(1):37–47. https://doi.org/10.1038/jcbfm.2012.128 .
doi: 10.1038/jcbfm.2012.128 pubmed: 22968321
Schuhmann MK, Kraft P, Stoll G, Lorenz K, Meuth SG, Wiendl H, et al. CD28 superagonist-mediated boost of regulatory T cells increases thrombo-inflammation and ischemic neurodegeneration during the acute phase of experimental stroke. J Cereb Blood Flow Metab. 2015;35(1):6–10. https://doi.org/10.1038/jcbfm.2014.175 .
doi: 10.1038/jcbfm.2014.175 pubmed: 25315859
Kleinschnitz C, Kraft P, Dreykluft A, Hagedorn I, Gobel K, Schuhmann MK, et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood. 2013;121(4):679–91. https://doi.org/10.1182/blood-2012-04-426734 .
doi: 10.1182/blood-2012-04-426734 pubmed: 23160472 pmcid: 3790947
Vital SA, Terao S, Nagai M, Granger DN. Mechanisms underlying the cerebral microvascular responses to angiotensin II-induced hypertension. Microcirculation. 2010;17(8):641–9. https://doi.org/10.1111/j.1549-8719.2010.00060.x .
doi: 10.1111/j.1549-8719.2010.00060.x pubmed: 21044218 pmcid: 3058857
Schmidt-Pogoda A, Bonberg N, Koecke MHM, Strecker JK, Wellmann J, Bruckmann NM, et al. Why most acute stroke studies are positive in animals but not in patients: a systematic comparison of preclinical, early phase, and phase 3 clinical trials of neuroprotective agents. Ann Neurol. 2020;87(1):40–51. https://doi.org/10.1002/ana.25643 .
doi: 10.1002/ana.25643 pubmed: 31714631
Jin WN, Gonzales R, Feng Y, Wood K, Chai Z, Dong JF, et al. Brain ischemia induces diversified neuroantigen-specific T-cell responses that exacerbate brain injury. Stroke. 2018;49(6):1471–8. https://doi.org/10.1161/STROKEAHA.118.020203 .
doi: 10.1161/STROKEAHA.118.020203 pubmed: 29695462 pmcid: 5976228
He Q, Shi X, Zhou B, Teng J, Zhang C, Liu S, et al. Interleukin 8 (CXCL8)-CXC chemokine receptor 2 (CXCR2) axis contributes to MiR-4437-associated recruitment of granulocytes and natural killer cells in ischemic stroke. Mol Immunol. 2018;101:440–9. https://doi.org/10.1016/j.molimm.2018.08.002 .
doi: 10.1016/j.molimm.2018.08.002 pubmed: 30096583
Lee GA, Lin TN, Chen CY, Mau SY, Huang WZ, Kao YC, et al. Interleukin 15 blockade protects the brain from cerebral ischemia-reperfusion injury. Brain Behav Immun. 2018;73:562–70. https://doi.org/10.1016/j.bbi.2018.06.021 .
doi: 10.1016/j.bbi.2018.06.021 pubmed: 29959050
van Blijswijk J, Schraml BU, Reis e Sousa C. Advantages and limitations of mouse models to deplete dendritic cells. Eur J Immunol. 2013;43(1):22–6. https://doi.org/10.1002/eji.201243022 .
doi: 10.1002/eji.201243022 pubmed: 23322690
Brennan PJ, Brigl M, Brenner MB. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol. 2013;13(2):101–17. https://doi.org/10.1038/nri3369 .
doi: 10.1038/nri3369 pubmed: 23334244

Auteurs

Leoni Rolfes (L)

Department of Neurology With Institute of Translational Neurology, University of Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany. leoni.rolfes@ukmuenster.de.
Department of Neurology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany. leoni.rolfes@ukmuenster.de.

Tobias Ruck (T)

Department of Neurology With Institute of Translational Neurology, University of Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.
Department of Neurology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.

Christina David (C)

Department of Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany.

Stine Mencl (S)

Department of Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany.

Stefanie Bock (S)

Department of Neurology With Institute of Translational Neurology, University of Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.

Mariella Schmidt (M)

Department of Neurology With Institute of Translational Neurology, University of Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.

Jan-Kolja Strecker (JK)

Department of Neurology With Institute of Translational Neurology, University of Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.

Steffen Pfeuffer (S)

Department of Neurology With Institute of Translational Neurology, University of Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.

Andreas-Schulte Mecklenbeck (AS)

Department of Neurology With Institute of Translational Neurology, University of Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.

Catharina Gross (C)

Department of Neurology With Institute of Translational Neurology, University of Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.

Michael Gliem (M)

Department of Neurology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.

Jens Minnerup (J)

Department of Neurology With Institute of Translational Neurology, University of Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.

Michael K Schuhmann (MK)

Department of Neurology, University Hospital Würzburg, Würzburg, Germany.

Christoph Kleinschnitz (C)

Department of Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany.

Sven G Meuth (SG)

Department of Neurology With Institute of Translational Neurology, University of Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.
Department of Neurology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH