Enhancer release and retargeting activates disease-susceptibility genes.
CCCTC-Binding Factor
/ genetics
CRISPR-Cas Systems
Cell Cycle Proteins
/ genetics
Cells, Cultured
Chromatin
Chromosomal Proteins, Non-Histone
/ genetics
Enhancer Elements, Genetic
Gene Deletion
Gene Expression Regulation, Neoplastic
Genetic Predisposition to Disease
Genome-Wide Association Study
Humans
MCF-7 Cells
Neoplasms
/ genetics
Neural Stem Cells
Oncogenes
Parkinson Disease
/ genetics
Promoter Regions, Genetic
Cohesins
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
received:
14
06
2018
accepted:
23
04
2021
pubmed:
28
5
2021
medline:
27
1
2022
entrez:
27
5
2021
Statut:
ppublish
Résumé
The functional engagement between an enhancer and its target promoter ensures precise gene transcription
Identifiants
pubmed: 34040254
doi: 10.1038/s41586-021-03577-1
pii: 10.1038/s41586-021-03577-1
doi:
Substances chimiques
CCCTC-Binding Factor
0
Cell Cycle Proteins
0
Chromatin
0
Chromosomal Proteins, Non-Histone
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
735-740Subventions
Organisme : NIGMS NIH HHS
ID : R21 GM132778
Pays : United States
Organisme : NIDDK NIH HHS
ID : R37 DK039949
Pays : United States
Organisme : NICHD NIH HHS
ID : F32 HD008118
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL150521
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA184770
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS093066
Pays : United States
Organisme : NHLBI NIH HHS
ID : U01 HL156059
Pays : United States
Organisme : NCI NIH HHS
ID : K22 CA204468
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG008153
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM136922
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK018477
Pays : United States
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Schoenfelder, S. & Fraser, P. Long-range enhancer–promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).
pubmed: 31086298
Hsieh, T. S. et al. Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol. Cell 78, 539–553 (2020).
pubmed: 32213323
pmcid: 7703524
doi: 10.1016/j.molcel.2020.03.002
Gasperini, M. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176, 377–390 (2019).
pubmed: 30612741
pmcid: 6690346
doi: 10.1016/j.cell.2018.11.029
van Arensbergen, J., van Steensel, B. & Bussemaker, H. J. In search of the determinants of enhancer-promoter interaction specificity. Trends Cell Biol. 24, 695–702 (2014).
pubmed: 25160912
pmcid: 4252644
doi: 10.1016/j.tcb.2014.07.004
Li, W. et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498, 516–520 (2013).
pubmed: 23728302
pmcid: 3718886
doi: 10.1038/nature12210
Arner, E. et al. Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 347, 1010–1014 (2015).
pubmed: 25678556
pmcid: 4681433
doi: 10.1126/science.1259418
The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
pmcid: 3439153
doi: 10.1038/nature11247
Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).
pubmed: 25497547
pmcid: 5635824
doi: 10.1016/j.cell.2014.11.021
Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944 (2017).
pubmed: 28525758
pmcid: 5538188
doi: 10.1016/j.cell.2017.05.004
Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).
pubmed: 24119843
doi: 10.1016/j.cell.2013.09.053
Li, Y. et al. The structural basis for cohesin-CTCF-anchored loops. Nature 578, 472–476 (2020).
pubmed: 31905366
pmcid: 7035113
doi: 10.1038/s41586-019-1910-z
Lucas, J. S., Zhang, Y., Dudko, O. K. & Murre, C. 3D trajectories adopted by coding and regulatory DNA elements: first-passage times for genomic interactions. Cell 158, 339–352 (2014).
pubmed: 24998931
pmcid: 4113018
doi: 10.1016/j.cell.2014.05.036
Guo, Y. et al. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162, 900–910 (2015).
pubmed: 26276636
pmcid: 4642453
doi: 10.1016/j.cell.2015.07.038
Jin, E. H. et al. Association between promoter polymorphisms of TFF1, TFF2, and TFF3 and the risk of gastric and diffuse gastric cancers in a Korean population. J. Korean Med. Sci. 30, 1035–1041 (2015).
pubmed: 26240479
pmcid: 4520932
doi: 10.3346/jkms.2015.30.8.1035
Weinhold, N., Jacobsen, A., Schultz, N., Sander, C. & Lee, W. Genome-wide analysis of noncoding regulatory mutations in cancer. Nat. Genet. 46, 1160–1165 (2014).
pubmed: 25261935
pmcid: 4217527
doi: 10.1038/ng.3101
Rheinbay, E. et al. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature 578, 102–111 (2020).
pubmed: 32025015
pmcid: 7054214
doi: 10.1038/s41586-020-1965-x
Cho, S. W. et al. Promoter of lncRNA gene PVT1 is a tumor-suppressor DNA boundary element. Cell 173, 1398–1412 (2018).
pubmed: 29731168
pmcid: 5984165
doi: 10.1016/j.cell.2018.03.068
Zhang, W. et al. A global transcriptional network connecting noncoding mutations to changes in tumor gene expression. Nat. Genet. 50, 613–620 (2018).
pubmed: 29610481
pmcid: 5893414
doi: 10.1038/s41588-018-0091-2
Tate, J. G. et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 47, D941–D947 (2019).
pubmed: 30371878
doi: 10.1093/nar/gky1015
Satake, W. et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat. Genet. 41, 1303–1307 (2009).
pubmed: 19915576
doi: 10.1038/ng.485
Liu, Z. et al. LRRK2 phosphorylates membrane-bound Rabs and is activated by GTP-bound Rab7L1 to promote recruitment to the trans-Golgi network. Hum. Mol. Genet. 27, 385–395 (2018).
pubmed: 29177506
doi: 10.1093/hmg/ddx410
Blackwood, E. M. & Kadonaga, J. T. Going the distance: a current view of enhancer action. Science 281, 60–63 (1998).
pubmed: 9679020
doi: 10.1126/science.281.5373.60
Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320 (2017).
pubmed: 28985562
pmcid: 5846482
doi: 10.1016/j.cell.2017.09.026
Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017).
pubmed: 29094699
pmcid: 5687303
doi: 10.1038/nature24281
Li, W. et al. Condensin I and II complexes license full estrogen receptor α-dependent enhancer activation. Mol. Cell 59, 188–202 (2015).
pubmed: 26166704
pmcid: 5770188
doi: 10.1016/j.molcel.2015.06.002
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
pubmed: 20513432
pmcid: 2898526
doi: 10.1016/j.molcel.2010.05.004
Stadhouders, R. et al. Multiplexed chromosome conformation capture sequencing for rapid genome-scale high-resolution detection of long-range chromatin interactions. Nat. Protocols 8, 509–524 (2013).
pubmed: 23411633
doi: 10.1038/nprot.2013.018
van de Werken, H. J. et al. Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat. Methods 9, 969–972 (2012).
pubmed: 22961246
doi: 10.1038/nmeth.2173
Krijger, P. H. L., Geeven, G., Bianchi, V., Hilvering, C. R. E. & de Laat, W. 4C-seq from beginning to end: a detailed protocol for sample preparation and data analysis. Methods 170, 17–32 (2020).
pubmed: 31351925
doi: 10.1016/j.ymeth.2019.07.014
Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).
pubmed: 19213877
pmcid: 2746483
doi: 10.1126/science.1168978
Hayward, N. K. et al. Whole-genome landscapes of major melanoma subtypes. Nature 545, 175–180 (2017).
pubmed: 28467829
doi: 10.1038/nature22071
Schuijers, J. et al. Transcriptional dysregulation of MYC reveals common enhancer-docking mechanism. Cell Rep. 23, 349–360 (2018).
pubmed: 29641996
pmcid: 5929158
doi: 10.1016/j.celrep.2018.03.056
Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).
pubmed: 25307933
pmcid: 4252608
doi: 10.1016/j.cell.2014.09.039
MacLeod, D. A. et al. RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson’s disease risk. Neuron 77, 425–439 (2013).
pubmed: 23395371
pmcid: 3646583
doi: 10.1016/j.neuron.2012.11.033
Latourelle, J. C. et al. Large-scale identification of clinical and genetic predictors of motor progression in patients with newly diagnosed Parkinson’s disease: a longitudinal cohort study and validation. Lancet Neurol. 16, 908–916 (2017).
pubmed: 28958801
pmcid: 5693218
doi: 10.1016/S1474-4422(17)30328-9
Pierce, S. E., Tyson, T., Booms, A., Prahl, J. & Coetzee, G. A. Parkinson’s disease genetic risk in a midbrain neuronal cell line. Neurobiol. Dis. 114, 53–64 (2018).
pubmed: 29486295
doi: 10.1016/j.nbd.2018.02.007
DeBoever, C. et al. Large-scale profiling reveals the influence of genetic variation on gene expression in human induced pluripotent stem cells. Cell Stem Cell 20, 533–546 (2017).
pubmed: 28388430
pmcid: 5444918
doi: 10.1016/j.stem.2017.03.009
Panopoulos, A. D. et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 22, 168–177 (2012).
pubmed: 22064701
doi: 10.1038/cr.2011.177
Panopoulos, A. D. et al. iPSCORE: a resource of 222 iPSC lines enabling functional characterization of genetic variation across a variety of cell types. Stem Cell Rep. 8, 1086–1100 (2017).
doi: 10.1016/j.stemcr.2017.03.012
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31, 2032–2034 (2015).
pubmed: 25697820
pmcid: 4765878
doi: 10.1093/bioinformatics/btv098
van de Geijn, B., McVicker, G., Gilad, Y. & Pritchard, J. K. WASP: allele-specific software for robust molecular quantitative trait locus discovery. Nat. Methods 12, 1061–1063 (2015).
pubmed: 26366987
pmcid: 4626402
doi: 10.1038/nmeth.3582
Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10.1–11.10.33 (2013).
doi: 10.1002/0471250953.bi1110s43
Mayba, O. et al. MBASED: allele-specific expression detection in cancer tissues and cell lines. Genome Biol. 15, 405 (2014).
pubmed: 25315065
pmcid: 4165366
doi: 10.1186/s13059-014-0405-3
Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).
pubmed: 21330290
pmcid: 3065696
doi: 10.1093/bioinformatics/btr064
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278
pmcid: 2832824
doi: 10.1093/bioinformatics/btq033
Battle, A., Brown, C. D., Engelhardt, B. E. & Montgomery, S. B. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).
pubmed: 29022597
doi: 10.1038/nature24277
MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 45, D896–D901 (2017).
pubmed: 27899670
doi: 10.1093/nar/gkw1133
Li, M. J. et al. GWASdb v2: an update database for human genetic variants identified by genome-wide association studies. Nucleic Acids Res. 44, D869–D876 (2016).
pubmed: 26615194
doi: 10.1093/nar/gkv1317
Nair, S. J. et al. Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly. Nat. Struct. Mol. Biol. 26, 193–203 (2019).
pubmed: 30833784
pmcid: 6709854
doi: 10.1038/s41594-019-0190-5
Krietenstein, N. et al. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78, 554–565 (2020).
pubmed: 32213324
pmcid: 7222625
doi: 10.1016/j.molcel.2020.03.003
Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).
pubmed: 27210764
pmcid: 4889513
doi: 10.1016/j.celrep.2016.04.085
Hatzis, P. & Talianidis, I. Dynamics of enhancer–promoter communication during differentiation-induced gene activation. Mol. Cell 10, 1467–1477 (2002).
pubmed: 12504020
doi: 10.1016/S1097-2765(02)00786-4