Enhancer release and retargeting activates disease-susceptibility genes.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
07 2021
Historique:
received: 14 06 2018
accepted: 23 04 2021
pubmed: 28 5 2021
medline: 27 1 2022
entrez: 27 5 2021
Statut: ppublish

Résumé

The functional engagement between an enhancer and its target promoter ensures precise gene transcription

Identifiants

pubmed: 34040254
doi: 10.1038/s41586-021-03577-1
pii: 10.1038/s41586-021-03577-1
doi:

Substances chimiques

CCCTC-Binding Factor 0
Cell Cycle Proteins 0
Chromatin 0
Chromosomal Proteins, Non-Histone 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

735-740

Subventions

Organisme : NIGMS NIH HHS
ID : R21 GM132778
Pays : United States
Organisme : NIDDK NIH HHS
ID : R37 DK039949
Pays : United States
Organisme : NICHD NIH HHS
ID : F32 HD008118
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL150521
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA184770
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS093066
Pays : United States
Organisme : NHLBI NIH HHS
ID : U01 HL156059
Pays : United States
Organisme : NCI NIH HHS
ID : K22 CA204468
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG008153
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM136922
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK018477
Pays : United States

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Schoenfelder, S. & Fraser, P. Long-range enhancer–promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).
pubmed: 31086298
Hsieh, T. S. et al. Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol. Cell 78, 539–553 (2020).
pubmed: 32213323 pmcid: 7703524 doi: 10.1016/j.molcel.2020.03.002
Gasperini, M. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176, 377–390 (2019).
pubmed: 30612741 pmcid: 6690346 doi: 10.1016/j.cell.2018.11.029
van Arensbergen, J., van Steensel, B. & Bussemaker, H. J. In search of the determinants of enhancer-promoter interaction specificity. Trends Cell Biol. 24, 695–702 (2014).
pubmed: 25160912 pmcid: 4252644 doi: 10.1016/j.tcb.2014.07.004
Li, W. et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498, 516–520 (2013).
pubmed: 23728302 pmcid: 3718886 doi: 10.1038/nature12210
Arner, E. et al. Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 347, 1010–1014 (2015).
pubmed: 25678556 pmcid: 4681433 doi: 10.1126/science.1259418
The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
pmcid: 3439153 doi: 10.1038/nature11247
Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).
pubmed: 25497547 pmcid: 5635824 doi: 10.1016/j.cell.2014.11.021
Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944 (2017).
pubmed: 28525758 pmcid: 5538188 doi: 10.1016/j.cell.2017.05.004
Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).
pubmed: 24119843 doi: 10.1016/j.cell.2013.09.053
Li, Y. et al. The structural basis for cohesin-CTCF-anchored loops. Nature 578, 472–476 (2020).
pubmed: 31905366 pmcid: 7035113 doi: 10.1038/s41586-019-1910-z
Lucas, J. S., Zhang, Y., Dudko, O. K. & Murre, C. 3D trajectories adopted by coding and regulatory DNA elements: first-passage times for genomic interactions. Cell 158, 339–352 (2014).
pubmed: 24998931 pmcid: 4113018 doi: 10.1016/j.cell.2014.05.036
Guo, Y. et al. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162, 900–910 (2015).
pubmed: 26276636 pmcid: 4642453 doi: 10.1016/j.cell.2015.07.038
Jin, E. H. et al. Association between promoter polymorphisms of TFF1, TFF2, and TFF3 and the risk of gastric and diffuse gastric cancers in a Korean population. J. Korean Med. Sci. 30, 1035–1041 (2015).
pubmed: 26240479 pmcid: 4520932 doi: 10.3346/jkms.2015.30.8.1035
Weinhold, N., Jacobsen, A., Schultz, N., Sander, C. & Lee, W. Genome-wide analysis of noncoding regulatory mutations in cancer. Nat. Genet. 46, 1160–1165 (2014).
pubmed: 25261935 pmcid: 4217527 doi: 10.1038/ng.3101
Rheinbay, E. et al. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature 578, 102–111 (2020).
pubmed: 32025015 pmcid: 7054214 doi: 10.1038/s41586-020-1965-x
Cho, S. W. et al. Promoter of lncRNA gene PVT1 is a tumor-suppressor DNA boundary element. Cell 173, 1398–1412 (2018).
pubmed: 29731168 pmcid: 5984165 doi: 10.1016/j.cell.2018.03.068
Zhang, W. et al. A global transcriptional network connecting noncoding mutations to changes in tumor gene expression. Nat. Genet. 50, 613–620 (2018).
pubmed: 29610481 pmcid: 5893414 doi: 10.1038/s41588-018-0091-2
Tate, J. G. et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 47, D941–D947 (2019).
pubmed: 30371878 doi: 10.1093/nar/gky1015
Satake, W. et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat. Genet. 41, 1303–1307 (2009).
pubmed: 19915576 doi: 10.1038/ng.485
Liu, Z. et al. LRRK2 phosphorylates membrane-bound Rabs and is activated by GTP-bound Rab7L1 to promote recruitment to the trans-Golgi network. Hum. Mol. Genet. 27, 385–395 (2018).
pubmed: 29177506 doi: 10.1093/hmg/ddx410
Blackwood, E. M. & Kadonaga, J. T. Going the distance: a current view of enhancer action. Science 281, 60–63 (1998).
pubmed: 9679020 doi: 10.1126/science.281.5373.60
Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320 (2017).
pubmed: 28985562 pmcid: 5846482 doi: 10.1016/j.cell.2017.09.026
Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017).
pubmed: 29094699 pmcid: 5687303 doi: 10.1038/nature24281
Li, W. et al. Condensin I and II complexes license full estrogen receptor α-dependent enhancer activation. Mol. Cell 59, 188–202 (2015).
pubmed: 26166704 pmcid: 5770188 doi: 10.1016/j.molcel.2015.06.002
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
pubmed: 20513432 pmcid: 2898526 doi: 10.1016/j.molcel.2010.05.004
Stadhouders, R. et al. Multiplexed chromosome conformation capture sequencing for rapid genome-scale high-resolution detection of long-range chromatin interactions. Nat. Protocols 8, 509–524 (2013).
pubmed: 23411633 doi: 10.1038/nprot.2013.018
van de Werken, H. J. et al. Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat. Methods 9, 969–972 (2012).
pubmed: 22961246 doi: 10.1038/nmeth.2173
Krijger, P. H. L., Geeven, G., Bianchi, V., Hilvering, C. R. E. & de Laat, W. 4C-seq from beginning to end: a detailed protocol for sample preparation and data analysis. Methods 170, 17–32 (2020).
pubmed: 31351925 doi: 10.1016/j.ymeth.2019.07.014
Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).
pubmed: 19213877 pmcid: 2746483 doi: 10.1126/science.1168978
Hayward, N. K. et al. Whole-genome landscapes of major melanoma subtypes. Nature 545, 175–180 (2017).
pubmed: 28467829 doi: 10.1038/nature22071
Schuijers, J. et al. Transcriptional dysregulation of MYC reveals common enhancer-docking mechanism. Cell Rep. 23, 349–360 (2018).
pubmed: 29641996 pmcid: 5929158 doi: 10.1016/j.celrep.2018.03.056
Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).
pubmed: 25307933 pmcid: 4252608 doi: 10.1016/j.cell.2014.09.039
MacLeod, D. A. et al. RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson’s disease risk. Neuron 77, 425–439 (2013).
pubmed: 23395371 pmcid: 3646583 doi: 10.1016/j.neuron.2012.11.033
Latourelle, J. C. et al. Large-scale identification of clinical and genetic predictors of motor progression in patients with newly diagnosed Parkinson’s disease: a longitudinal cohort study and validation. Lancet Neurol. 16, 908–916 (2017).
pubmed: 28958801 pmcid: 5693218 doi: 10.1016/S1474-4422(17)30328-9
Pierce, S. E., Tyson, T., Booms, A., Prahl, J. & Coetzee, G. A. Parkinson’s disease genetic risk in a midbrain neuronal cell line. Neurobiol. Dis. 114, 53–64 (2018).
pubmed: 29486295 doi: 10.1016/j.nbd.2018.02.007
DeBoever, C. et al. Large-scale profiling reveals the influence of genetic variation on gene expression in human induced pluripotent stem cells. Cell Stem Cell 20, 533–546 (2017).
pubmed: 28388430 pmcid: 5444918 doi: 10.1016/j.stem.2017.03.009
Panopoulos, A. D. et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 22, 168–177 (2012).
pubmed: 22064701 doi: 10.1038/cr.2011.177
Panopoulos, A. D. et al. iPSCORE: a resource of 222 iPSC lines enabling functional characterization of genetic variation across a variety of cell types. Stem Cell Rep. 8, 1086–1100 (2017).
doi: 10.1016/j.stemcr.2017.03.012
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31, 2032–2034 (2015).
pubmed: 25697820 pmcid: 4765878 doi: 10.1093/bioinformatics/btv098
van de Geijn, B., McVicker, G., Gilad, Y. & Pritchard, J. K. WASP: allele-specific software for robust molecular quantitative trait locus discovery. Nat. Methods 12, 1061–1063 (2015).
pubmed: 26366987 pmcid: 4626402 doi: 10.1038/nmeth.3582
Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10.1–11.10.33 (2013).
doi: 10.1002/0471250953.bi1110s43
Mayba, O. et al. MBASED: allele-specific expression detection in cancer tissues and cell lines. Genome Biol. 15, 405 (2014).
pubmed: 25315065 pmcid: 4165366 doi: 10.1186/s13059-014-0405-3
Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).
pubmed: 21330290 pmcid: 3065696 doi: 10.1093/bioinformatics/btr064
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Battle, A., Brown, C. D., Engelhardt, B. E. & Montgomery, S. B. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).
pubmed: 29022597 doi: 10.1038/nature24277
MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 45, D896–D901 (2017).
pubmed: 27899670 doi: 10.1093/nar/gkw1133
Li, M. J. et al. GWASdb v2: an update database for human genetic variants identified by genome-wide association studies. Nucleic Acids Res. 44, D869–D876 (2016).
pubmed: 26615194 doi: 10.1093/nar/gkv1317
Nair, S. J. et al. Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly. Nat. Struct. Mol. Biol. 26, 193–203 (2019).
pubmed: 30833784 pmcid: 6709854 doi: 10.1038/s41594-019-0190-5
Krietenstein, N. et al. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78, 554–565 (2020).
pubmed: 32213324 pmcid: 7222625 doi: 10.1016/j.molcel.2020.03.003
Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).
pubmed: 27210764 pmcid: 4889513 doi: 10.1016/j.celrep.2016.04.085
Hatzis, P. & Talianidis, I. Dynamics of enhancer–promoter communication during differentiation-induced gene activation. Mol. Cell 10, 1467–1477 (2002).
pubmed: 12504020 doi: 10.1016/S1097-2765(02)00786-4

Auteurs

Soohwan Oh (S)

Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA.

Jiaofang Shao (J)

Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.

Joydeep Mitra (J)

Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA.

Feng Xiong (F)

Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.

Matteo D'Antonio (M)

Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA.

Ruoyu Wang (R)

Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA.

Ivan Garcia-Bassets (I)

Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA.

Qi Ma (Q)

Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA.

Xiaoyu Zhu (X)

Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.

Joo-Hyung Lee (JH)

Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.

Sreejith J Nair (SJ)

Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA.

Feng Yang (F)

Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA.

Kenneth Ohgi (K)

Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA.

Kelly A Frazer (KA)

Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA.
Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.

Zhengdong D Zhang (ZD)

Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA.

Wenbo Li (W)

Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA. Wenbo.li@uth.tmc.edu.
Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA. Wenbo.li@uth.tmc.edu.

Michael G Rosenfeld (MG)

Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA. mrosenfeld@health.ucsd.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH