Correlations enhance the behavioral readout of neural population activity in association cortex.


Journal

Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671

Informations de publication

Date de publication:
07 2021
Historique:
received: 11 05 2020
accepted: 24 03 2021
pubmed: 15 5 2021
medline: 18 9 2021
entrez: 14 5 2021
Statut: ppublish

Résumé

Noise correlations (that is, trial-to-trial covariations in neural activity for a given stimulus) limit the stimulus information encoded by neural populations, leading to the widely held prediction that they impair perceptual discrimination behaviors. However, this prediction neglects the effects of correlations on information readout. We studied how correlations affect both encoding and readout of sensory information. We analyzed calcium imaging data from mouse posterior parietal cortex during two perceptual discrimination tasks. Correlations reduced the encoded stimulus information, but, seemingly paradoxically, were higher when mice made correct rather than incorrect choices. Single-trial behavioral choices depended not only on the stimulus information encoded by the whole population, but unexpectedly also on the consistency of information across neurons and time. Because correlations increased information consistency, they enhanced the conversion of sensory information into behavioral choices, overcoming their detrimental information-limiting effects. Thus, correlations in association cortex can benefit task performance even if they decrease sensory information.

Identifiants

pubmed: 33986549
doi: 10.1038/s41593-021-00845-1
pii: 10.1038/s41593-021-00845-1
pmc: PMC8559600
mid: NIHMS1742530
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

975-986

Subventions

Organisme : NINDS NIH HHS
ID : R01 NS089521
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS108410
Pays : United States
Organisme : NINDS NIH HHS
ID : U19 NS107464
Pays : United States

Commentaires et corrections

Type : CommentIn

Références

Ni, A. M., Ruff, D. A., Alberts, J. J., Symmonds, J. & Cohen, M. R. Learning and attention reveal a general relationship between population activity and behavior. Science 359, 463–465 (2018).
pubmed: 29371470 pmcid: 6571104 doi: 10.1126/science.aao0284
Kohn, A., Coen-Cagli, R., Kanitscheider, I. & Pouget, A. Correlations and neuronal population information. Annu Rev. Neurosci. 39, 237–256 (2016).
pubmed: 27145916 pmcid: 5137197 doi: 10.1146/annurev-neuro-070815-013851
Panzeri, S., Harvey, C. D., Piasini, E., Latham, P. E. & Fellin, T. Cracking the neural code for sensory perception by combining statistics, intervention and behavior. Neuron 93, 491–507 (2017).
pubmed: 28182905 pmcid: 5308795 doi: 10.1016/j.neuron.2016.12.036
Gawne, T. J. & Richmond, B. J. How independent are the messages carried by adjacent inferior temporal cortical neurons? J. Neurosci. 13, 2758–2771 (1993).
pubmed: 8331371 pmcid: 6576676 doi: 10.1523/JNEUROSCI.13-07-02758.1993
Averbeck, B. B., Latham, P. E. & Pouget, A. Neural correlations, population coding and computation. Nat. Rev. Neurosci. 7, 358–366 (2006).
pubmed: 16760916 doi: 10.1038/nrn1888
Zohary, E., Shadlen, M. N. & Newsome, W. T. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370, 140–143 (1994).
pubmed: 8022482 doi: 10.1038/370140a0
Moreno-Bote, R. et al. Information-limiting correlations. Nat. Neurosci. 17, 1410–1417 (2014).
pubmed: 25195105 pmcid: 4486057 doi: 10.1038/nn.3807
Bartolo, R., Saunders, R. C., Mitz, A. R. & Averbeck, B. B. Information-limiting correlations in large neural populations. J. Neurosci. 40, 1668–1678 (2020).
pubmed: 31941667 pmcid: 7046329 doi: 10.1523/JNEUROSCI.2072-19.2019
Rumyantsev, O. I. et al. Fundamental bounds on the fidelity of sensory cortical coding. Nature 580, 100–105 (2020).
pubmed: 32238928 doi: 10.1038/s41586-020-2130-2
Gold, J. I. & Shadlen, M. N. Neural computations that underlie decisions about sensory stimuli. Trends Cogn. Sci. 5, 10–16 (2001).
pubmed: 11164731 doi: 10.1016/S1364-6613(00)01567-9
Zariwala, H. A., Kepecs, A., Uchida, N., Hirokawa, J. & Mainen, Z. F. The limits of deliberation in a perceptual decision task. Neuron 78, 339–351 (2013).
pubmed: 23541901 pmcid: 3711252 doi: 10.1016/j.neuron.2013.02.010
Mazurek, M. E. & Shadlen, M. N. Limits to the temporal fidelity of cortical spike rate signals. Nat. Neurosci. 5, 463–471 (2002).
pubmed: 11976706 doi: 10.1038/nn836
Diesmann, M., Gewaltig, M. O. & Aertsen, A. Stable propagation of synchronous spiking in cortical neural networks. Nature 402, 529–533 (1999).
pubmed: 10591212 doi: 10.1038/990101
Zandvakili, A. & Kohn, A. Coordinated neuronal activity enhances corticocortical communication. Neuron 87, 827–839 (2015).
pubmed: 26291164 pmcid: 4545497 doi: 10.1016/j.neuron.2015.07.026
Alonso, J. M., Usrey, W. M. & Reid, R. C. Precisely correlated firing in cells of the lateral geniculate nucleus. Nature 383, 815–819 (1996).
pubmed: 8893005 doi: 10.1038/383815a0
Salinas, E. & Sejnowski, T. J. Correlated neuronal activity and the flow of neural information. Nat. Rev. Neurosci. 2, 539–550 (2001).
pubmed: 11483997 pmcid: 2868968 doi: 10.1038/35086012
Zylberberg, J., Pouget, A., Latham, P. E. & Shea-Brown, E. Robust information propagation through noisy neural circuits. PLoS Comput. Biol. 13, e1005497 (2017).
pubmed: 28419098 pmcid: 5413111 doi: 10.1371/journal.pcbi.1005497
Harvey, C. D., Coen, P. & Tank, D. W. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484, 62–68 (2012).
pubmed: 22419153 pmcid: 3321074 doi: 10.1038/nature10918
Runyan, C. A., Piasini, E., Panzeri, S. & Harvey, C. D. Distinct timescales of population coding across cortex. Nature 548, 92–96 (2017).
pubmed: 28723889 pmcid: 5859334 doi: 10.1038/nature23020
Hanks, T. D. et al. Distinct relationships of parietal and prefrontal cortices to evidence accumulation. Nature 520, 220–223 (2015).
pubmed: 25600270 pmcid: 4835184 doi: 10.1038/nature14066
Morcos, A. S. & Harvey, C. D. History-dependent variability in population dynamics during evidence accumulation in cortex. Nat. Neurosci. 19, 1672–1681 (2016).
pubmed: 27694990 pmcid: 5127723 doi: 10.1038/nn.4403
Raposo, D., Kaufman, M. T. & Churchland, A. K. A category-free neural population supports evolving demands during decision-making. Nat. Neurosci. 17, 1784–1792 (2014).
pubmed: 25383902 pmcid: 4294797 doi: 10.1038/nn.3865
Pho, G. N., Goard, M. J., Woodson, J., Crawford, B. & Sur, M. Task-dependent representations of stimulus and choice in mouse parietal cortex. Nat. Commun. 9, 2596 (2018).
pubmed: 29968709 pmcid: 6030204 doi: 10.1038/s41467-018-05012-y
Panzeri, S., Schultz, S. R., Treves, A. & Rolls, E. T. Correlations and the encoding of information in the nervous system. Proc. Biol. Sci. 266, 1001–1012 (1999).
pubmed: 10610508 pmcid: 1689940 doi: 10.1098/rspb.1999.0736
Averbeck, B. B. & Lee, D. Effects of noise correlations on information encoding and decoding. J. Neurophysiol. 95, 3633–3644 (2006).
pubmed: 16554512 doi: 10.1152/jn.00919.2005
Nogueira, R. et al. The effects of population tuning and trial-by-trial variability on information encoding and behavior. J. Neurosci. 40, 1066–1083 (2020).
pubmed: 31754013 pmcid: 6989000 doi: 10.1523/JNEUROSCI.0859-19.2019
Romo, R., Hernandez, A., Zainos, A. & Salinas, E. Correlated neuronal discharges that increase coding efficiency during perceptual discrimination. Neuron 38, 649–657 (2003).
pubmed: 12765615 doi: 10.1016/S0896-6273(03)00287-3
Reich, D. S., Mechler, F. & Victor, J. D. Independent and redundant information in nearby cortical neurons. Science 294, 2566–2568 (2001).
pubmed: 11752580 doi: 10.1126/science.1065839
Koch, C., Rapp, M. & Segev, I. A brief history of time (constants). Cereb. Cortex 6, 93–101 (1996).
pubmed: 8670642 doi: 10.1093/cercor/6.2.93
Reyes, A. D. Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nat. Neurosci. 6, 593–599 (2003).
pubmed: 12730700 doi: 10.1038/nn1056
Shahidi, N., Andrei, A. R., Hu, M. & Dragoi, V. High-order coordination of cortical spiking activity modulates perceptual accuracy. Nat. Neurosci. 22, 1148–1158 (2019).
pubmed: 31110324 pmcid: 6592747 doi: 10.1038/s41593-019-0406-3
Histed, M. H. & Maunsell, J. H. Cortical neural populations can guide behavior by integrating inputs linearly, independent of synchrony. Proc. Natl Acad. Sci. USA 111, E178–E187 (2014).
pubmed: 24367105 doi: 10.1073/pnas.1318750111
Emiliani, V., Cohen, A. E., Deisseroth, K. & Hausser, M. All-optical interrogation of neural circuits. J. Neurosci. 35, 13917–13926 (2015).
pubmed: 26468193 pmcid: 4604230 doi: 10.1523/JNEUROSCI.2916-15.2015
Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical neurons: implications for connectivity, computation and information coding. J. Neurosci. 18, 3870–3896 (1998).
pubmed: 9570816 pmcid: 6793166 doi: 10.1523/JNEUROSCI.18-10-03870.1998
Ostojic, S., Brunel, N. & Hakim, V. How connectivity, background activity and synaptic properties shape the cross-correlation between spike trains. J. Neurosci. 29, 10234–10253 (2009).
pubmed: 19692598 pmcid: 6665800 doi: 10.1523/JNEUROSCI.1275-09.2009
Rosenbaum, R., Smith, M. A., Kohn, A., Rubin, J. E. & Doiron, B. The spatial structure of correlated neuronal variability. Nat. Neurosci. 20, 107–114 (2017).
pubmed: 27798630 doi: 10.1038/nn.4433
de la Rocha, J., Doiron, B., Shea-Brown, E., Josic, K. & Reyes, A. Correlation between neural spike trains increases with firing rate. Nature 448, 802–806 (2007).
pubmed: 17700699 doi: 10.1038/nature06028
Cossell, L. et al. Functional organization of excitatory synaptic strength in primary visual cortex. Nature 518, 399–403 (2015).
pubmed: 25652823 pmcid: 4843963 doi: 10.1038/nature14182
Marshel, J. H. et al. Cortical layer-specific critical dynamics triggering perception. Science 365, eaaw5202 (2019).
pubmed: 31320556 pmcid: 6711485 doi: 10.1126/science.aaw5202
Pitkow, X., Liu, S., Angelaki, D. E., DeAngelis, G. C. & Pouget, A. How can single sensory neurons predict behavior? Neuron 87, 411–423 (2015).
pubmed: 26182422 pmcid: 4683594 doi: 10.1016/j.neuron.2015.06.033
Nirenberg, S., Carcieri, S. M., Jacobs, A. L. & Latham, P. E. Retinal ganglion cells act largely as independent encoders. Nature 411, 698–701 (2001).
pubmed: 11395773 doi: 10.1038/35079612
Karpas, E.D., Maoz, O., Kiani, R. & Schneidman, E. Strongly correlated spatiotemporal encoding and simple decoding in the prefrontal cortex. Preprint at bioRxiv https://doi.org/10.1101/693192 (2019).
Morcos, A. S. et al. Dataset of ‘History-dependent variability in population dynamics during evidence accumulation in cortex’. G-Node https://doi.gin.g-node.org/10.12751/g-node.g1xyem/ (2021).
Runyan, C. A. et al. Dataset of ‘Distinct timescales of population coding across cortex’. G-Node https://doi.org/10.12751/g-node.tqbad8 (2021)
Aronov, D. & Tank, D. W. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system. Neuron 84, 442–456 (2014).
pubmed: 25374363 pmcid: 4454359 doi: 10.1016/j.neuron.2014.08.042
Greenberg, D. S. & Kerr, J. N. Automated correction of fast motion artifacts for two-photon imaging of awake animals. J. Neurosci. Methods 176, 1–15 (2009).
pubmed: 18789968 doi: 10.1016/j.jneumeth.2008.08.020
Vogelstein, J. T. et al. Fast nonnegative deconvolution for spike train inference from population calcium imaging. J. Neurophysiol. 104, 3691–3704 (2010).
pubmed: 20554834 pmcid: 3007657 doi: 10.1152/jn.01073.2009
Boser, B. E., Guyon, I. M. & Vapnik, V. N. A training algorithm for optimal margin classifiers. in Fifth Annual Workshop on Computational Learning Theory (ed. Haussler, D.) 144–152 (ACM Press, 1992).
Chang, C. C. L. & Merz, C. J. LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011).
doi: 10.1145/1961189.1961199
Lin, H.-T. L., Merz, C.-J. & Weng, R. C. A note on Platt’s probabilistic outputs for support vector machines. Mach. Learn. 68, 267–276 (2007).
doi: 10.1007/s10994-007-5018-6
Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S. & Movshon, J. A. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis. Neurosci. 13, 87–100 (1996).
pubmed: 8730992 doi: 10.1017/S095252380000715X
Kang, I. & Maunsell, J. H. Potential confounds in estimating trial-to-trial correlations between neuronal response and behavior using choice probabilities. J. Neurophysiol. 108, 3403–3415 (2012).
pubmed: 22993262 pmcid: 3544877 doi: 10.1152/jn.00471.2012
Seabold, S. P. & Perktold, J. Statsmodels: econometric and statistical modeling with Python. in Proceedings of the 9th Python in Science Conference (eds van der Walt, S. & Millman, J.) 92–96 (SciPy, 2010).

Auteurs

Martina Valente (M)

Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy.
Centro Interdisciplinare Mente e Cervello (CIMeC), University of Trento, Rovereto, Italy.

Giuseppe Pica (G)

Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy.

Giulio Bondanelli (G)

Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy.

Monica Moroni (M)

Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy.

Caroline A Runyan (CA)

Department of Neurobiology, Harvard Medical School, Boston, MA, USA.

Ari S Morcos (AS)

Department of Neurobiology, Harvard Medical School, Boston, MA, USA.

Christopher D Harvey (CD)

Department of Neurobiology, Harvard Medical School, Boston, MA, USA. harvey@hms.harvard.edu.

Stefano Panzeri (S)

Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy. stefano.panzeri@iit.it.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH