Melatonin prevents blood-retinal barrier breakdown and mitochondrial dysfunction in high glucose and hypoxia-induced in vitro diabetic macular edema model.
Apoptosis
/ drug effects
Aryl Hydrocarbon Receptor Nuclear Translocator
/ genetics
Blood-Retinal Barrier
/ drug effects
Cell Hypoxia
Cell Line
Diabetic Retinopathy
Epithelial Cells
/ drug effects
Glucose
Humans
Hypoxia-Inducible Factor 1, alpha Subunit
/ genetics
Macular Edema
Melatonin
/ pharmacology
Mitochondria
/ drug effects
Mitochondrial Dynamics
/ drug effects
Retinal Pigment Epithelium
/ cytology
Vascular Endothelial Growth Factor A
/ genetics
Vascular Endothelial Growth Factor Receptor-2
/ genetics
Biogenesis
Blood-retinal barrier
Diabetic macular edema
Melatonin
Mitochondrial fission
Mitophagy
Journal
Toxicology in vitro : an international journal published in association with BIBRA
ISSN: 1879-3177
Titre abrégé: Toxicol In Vitro
Pays: England
ID NLM: 8712158
Informations de publication
Date de publication:
Sep 2021
Sep 2021
Historique:
received:
04
04
2021
revised:
29
04
2021
accepted:
02
05
2021
pubmed:
8
5
2021
medline:
8
1
2022
entrez:
7
5
2021
Statut:
ppublish
Résumé
Diabetic macular edema (DME) is a leading cause of blindness in diabetic retinopathy. Prolonged hyperglycemia plus hypoxia contributes to DME pathogenesis. Retinal pigmented epithelial cells comprise the outer blood-retinal barrier and are essential for maintaining physiological functioning of the retina. Melatonin acts as an antioxidant and regulator of mitochondrial bioenergetics and has a protective effect against ocular diseases. However, the role of mitochondrial dysfunction and the therapeutic potential of melatonin in DME remain largely unexplored. Here, we used an in vitro model of DME to investigate blood-retinal barrier integrity and permeability, angiogenesis, mitochondrial dynamics, and apoptosis signaling to evaluate the potential protective efficacy of melatonin in DME. We found that melatonin prevents cell hyper-permeability and outer barrier breakdown by reducing HIF-1α, HIF-1β and VEGF and VEGF receptor gene expression. In addition, melatonin reduced the expression of genes involved in mitochondrial fission (DRP1, hFis1, MIEF2, MFF), mitophagy (PINK, BNip3, NIX), and increased the expression of genes involved in mitochondrial biogenesis (PGC-1α, NRF2, PPAR-γ) to maintain mitochondrial homeostasis. Moreover, melatonin prevented apoptosis of retinal pigmented epithelial cells. Our results suggest that mitochondrial dysfunction may be involved in DME pathology, and melatonin may have therapeutic value in DME, by targeting signaling in mitochondria.
Identifiants
pubmed: 33962019
pii: S0887-2333(21)00116-8
doi: 10.1016/j.tiv.2021.105191
pii:
doi:
Substances chimiques
ARNT protein, human
0
HIF1A protein, human
0
Hypoxia-Inducible Factor 1, alpha Subunit
0
VEGFA protein, human
0
Vascular Endothelial Growth Factor A
0
Aryl Hydrocarbon Receptor Nuclear Translocator
138391-32-9
KDR protein, human
EC 2.7.10.1
Vascular Endothelial Growth Factor Receptor-2
EC 2.7.10.1
Glucose
IY9XDZ35W2
Melatonin
JL5DK93RCL
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
105191Informations de copyright
Copyright © 2021 Elsevier Ltd. All rights reserved.