Fish oil replacement prevents, while docosahexaenoic acid-derived protectin DX mitigates end-stage-renal-disease in atherosclerotic diabetic mice.


Journal

FASEB journal : official publication of the Federation of American Societies for Experimental Biology
ISSN: 1530-6860
Titre abrégé: FASEB J
Pays: United States
ID NLM: 8804484

Informations de publication

Date de publication:
05 2021
Historique:
revised: 04 03 2021
received: 13 01 2021
accepted: 15 03 2021
entrez: 9 4 2021
pubmed: 10 4 2021
medline: 28 7 2021
Statut: ppublish

Résumé

Diabetic nephropathy (DN) remains the major cause of end-stage renal disease (ESRD). We used high-fat/high-sucrose (HFHS)-fed LDLr

Identifiants

pubmed: 33835594
doi: 10.1096/fj.202100073R
doi:

Substances chimiques

10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoic acid 0
Apob protein, mouse 0
Apolipoprotein B-100 0
Fish Oils 0
Receptors, LDL 0
Docosahexaenoic Acids 25167-62-8

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e21559

Subventions

Organisme : Canadian Institutes of Health Research (CIHR)

Informations de copyright

© 2021 Federation of American Societies for Experimental Biology.

Références

Kolb H, Mandrup-Poulsen T. The global diabetes epidemic as a consequence of lifestyle-induced low-grade inflammation. Diabetologia. 2010;53(1):10-20. https://doi.org/10.1007/s00125-009-1573-7
van Dieren S, Beulens JWJ, van der Schouw YT, Grobbee DE, Neal B. The global burden of diabetes and its complications: an emerging pandemic. Eur J Cardiovasc Prev Rehabil Off J Eur Soc Cardiol Work Groups Epidemiol Prev Card Rehabil Exerc Physiol. 2010;17(Suppl 1):S3-8. https://doi.org/10.1097/01.hjr.0000368191.86614.5a
Thomas MC, Brownlee M, Susztak K, et al. Diabetic kidney disease. Nat Rev Dis Primer. 2015;1:15018. https://doi.org/10.1038/nrdp.2015.18
Schena FP, Gesualdo L. Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol. 2005;16(3 suppl 1):S30-S33. https://doi.org/10.1681/ASN.2004110970
Vallon V, Komers R. Pathophysiology of the diabetic kidney. Compr Physiol. 2011;1(3):1175-1232. https://doi.org/10.1002/cphy.c100049
Davies MJ, D’Alessio DA, Fradkin J, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018;41(12):2669-2701. https://doi.org/10.2337/dci18-0033
Micakovic T, Papagiannarou S, Clark E, et al. The angiotensin II type 2 receptors protect renal tubule mitochondria in early stages of diabetes mellitus. Kidney Int. 2018;94(5):937-950. https://doi.org/10.1016/j.kint.2018.06.006
Robinson BM, Akizawa T, Jager KJ, Kerr PG, Saran R, Pisoni RL. Factors affecting outcomes in patients reaching end-stage kidney disease worldwide: differences in access to renal replacement therapy, modality use, and haemodialysis practices. Lancet Lond Engl. 2016;388(10041):294-306. https://doi.org/10.1016/S0140-6736(16)30448-2
Serhan CN. Novel Pro-Resolving Lipid Mediators in Inflammation Are Leads for Resolution Physiology. Nature. 2014;510(7503):92-101. https://doi.org/10.1038/nature13479
Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat Immunol. 2005;6(12):1191-1197. https://doi.org/10.1038/ni1276
Lee CC, Sharp SJ, Wexler DJ, Adler AI. Dietary intake of eicosapentaenoic and docosahexaenoic acid and diabetic nephropathy: cohort analysis of the diabetes control and complications trial. Diabetes Care. 2010;33(7):1454-1456. https://doi.org/10.2337/dc09-2245
Elajami TK, Alfaddagh A, Lakshminarayan D, Soliman M, Chandnani M, Welty FK. Eicosapentaenoic and docosahexaenoic acids attenuate progression of albuminuria in patients with Type 2 diabetes mellitus and coronary artery disease. J Am Heart Assoc. 2017;6(7). https://doi.org/10.1161/JAHA.116.004740
Li G, Chen Z, Bhat OM, et al. NLRP3 inflammasome as a novel target for docosahexaenoic acid metabolites to abrogate glomerular injury. J Lipid Res. 2017;58(6):1080-1090. https://doi.org/10.1194/jlr.M072587
Miller PE, Van Elswyk M, Alexander DD. Long-chain omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and blood pressure: a meta-analysis of randomized controlled trials. Am J Hypertens. 2014;27(7):885-896. https://doi.org/10.1093/ajh/hpu024
Garman JH, Mulroney S, Manigrasso M, Flynn E, Maric C. Omega-3 fatty acid rich diet prevents diabetic renal disease. Am J Physiol-Ren Physiol. 2009;296(2):F306-F316. https://doi.org/10.1152/ajprenal.90326.2008
de Boer IH, Zelnick LR, Ruzinski J, et al. Effect of vitamin D and omega-3 fatty acid supplementation on kidney function in patients with Type 2 diabetes: a randomized clinical trial. JAMA. 2019;322(19):1899-1909. https://doi.org/10.1001/jama.2019.17380
Serhan CN, Dalli J, Colas RA, Winkler JW, Chiang N. Protectins and maresins: new pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Biochim Biophys Acta. 2015;1851(4):397-413. https://doi.org/10.1016/j.bbalip.2014.08.006
Chiu C-Y, Gomolka B, Dierkes C, et al. Omega-6 docosapentaenoic acid-derived resolvins and 17-hydroxydocosahexaenoic acid modulate macrophage function and alleviate experimental colitis. Inflamm Res. 2012;61(9):967-976. https://doi.org/10.1007/s00011-012-0489-8
Xia H, Chen L, Liu H, et al. Protectin DX increases survival in a mouse model of sepsis by ameliorating inflammation and modulating macrophage phenotype. Sci Rep. 2017;7(1):1-11. https://doi.org/10.1038/s41598-017-00103-0
Neuhofer A, Zeyda M, Mascher D, et al. Impaired local production of proresolving lipid mediators in obesity and 17-HDHA as a potential treatment for obesity-associated inflammation. Diabetes. 2013;62(6):1945-1956. https://doi.org/10.2337/db12-0828
White PJ, St-Pierre P, Charbonneau A, et al. Protectin DX alleviates insulin resistance by activating a myokine-liver glucoregulatory axis. Nat Med. 2014;20(6):664-669. https://doi.org/10.1038/nm.3549
Duffield JS, Hong S, Vaidya VS, et al. Resolvin D series and protectin D1 mitigate acute kidney injury. J Immunol. 2006;177(9):5902-5911. https://doi.org/10.4049/jimmunol.177.9.5902
Drapeau N, Lizotte F, Denhez B, Guay A, Kennedy CR, Geraldes P. Expression of SHP-1 induced by hyperglycemia prevents insulin actions in podocytes. Am J Physiol Endocrinol Metab. 2013;304(11):E1188-1198. https://doi.org/10.1152/ajpendo.00560.2012
Le Quang K, Bouchareb R, Lachance D, et al. Early development of calcific aortic valve disease and left ventricular hypertrophy in a mouse model of combined dyslipidemia and Type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol. 2014;34(10):2283-2291. https://doi.org/10.1161/ATVBAHA.114.304205
Devedjian J-C, George M, Casellas A, et al. Transgenic mice overexpressing insulin-like growth factor-II in β cells develop type 2 diabetes. J Clin Invest. 2000;105(6):731-740. https://doi.org/10.1172/JCI5656
Powell DW, Kenagy DN, Zheng S, et al. Associations between structural and functional changes to the kidney in diabetic humans and mice. Life Sci. 2013;93(7):257-264. https://doi.org/10.1016/j.lfs.2013.06.016
Leaf IA, Nakagawa S, Johnson BG, et al. Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury. J Clin Invest. 2017;127(1):321-334. https://doi.org/10.1172/JCI87532
Lee GSL, Nast CC, Peng SC, et al. Differential response of glomerular epithelial and mesangial cells after subtotal nephrectomy. Kidney Int. 1998;53(5):1389-1398. https://doi.org/10.1046/j.1523-1755.1998.00871.x
Floege J, Johnson RJ, Gordon K, et al. Increased synthesis of extracellular matrix in mesangial proliferative nephritis. Kidney Int. 1991;40(3):477-488. https://doi.org/10.1038/ki.1991.235
Ebihara I, Suzuki S, Nakamura T, et al. Extracellular matrix component mRNA expression in glomeruli in experimental focal glomerulosclerosis. J Am Soc Nephrol. 1993;3(7):1387-1397.
Ichimura T, Asseldonk EJ, Humphreys BD, Gunaratnam L, Duffield JS, Bonventre JV. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest. 2008;118(5):1657-1668. https://doi.org/10.1172/JCI34487
Qureshi AR, Alvestrand A, Danielsson A, et al. Factors predicting malnutrition in hemodialysis patients: a cross-sectional study. Kidney Int. 1998;53(3):773-782. https://doi.org/10.1046/j.1523-1755.1998.00812.x
Wang XH, Mitch WE. Mechanisms of muscle wasting in chronic kidney disease. Nat Rev Nephrol. 2014;10(9):504-516. https://doi.org/10.1038/nrneph.2014.112
pubmeddev, al G-IC et. Prevalence of protein-energy wasting syndrome and its association with mortality in haemodialysis patients in a centre in Spain. - PubMed - NCBI. Accessed December 4, 2019. http://www.ncbi.nlm.nih.gov/pubmed/?term=Prevalence+of+protein-energy+wasting+syndrome+and+its+association+with+mortality+in+haemodialysis+patients+in+a+centre+in+Spain
Marcello T, Ananth KS, Ravi T. Epidemiology and mechanisms of uremia-related cardiovascular disease. Circulation. 2016;133(5):518-536. https://doi.org/10.1161/CIRCULATIONAHA.115.018713
Meeus F, Kourilsky O, Guerin AP, Gaudry C, Marchais SJ, London GM. Pathophysiology of cardiovascular disease in hemodialysis patients. Kidney Int. 2000;58:S140-S147. https://doi.org/10.1046/j.1523-1755.2000.07618.x
Berl T, Henrich W. Kidney-heart interactions: epidemiology, pathogenesis, and treatment. Clin J Am Soc Nephrol. 2006;1(1):8-18. https://doi.org/10.2215/CJN.00730805
Rozenbaum Z, Topilsky Y, Khoury S, Pereg D, Laufer-Perl M. Association of body mass index and diastolic function in metabolically healthy obese with preserved ejection fraction. Int J Cardiol. 2019;277:147-152. https://doi.org/10.1016/j.ijcard.2018.08.008
Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis. 1998;32(5):S112-S119. https://doi.org/10.1053/ajkd.1998.v32.pm9820470
White PJ, Arita M, Taguchi R, Kang JX, Marette A. Transgenic restoration of long-chain n-3 fatty acids in insulin target tissues improves resolution capacity and alleviates obesity-linked inflammation and insulin resistance in high-fat-fed mice. Diabetes. 2010;59(12):3066-3073. https://doi.org/10.2337/db10-0054
Casanova MA, Medeiros F, Trindade M, Cohen C, Oigman W, Neves MF. Omega-3 fatty acids supplementation improves endothelial function and arterial stiffness in hypertensive patients with hypertriglyceridemia and high cardiovascular risk. J Am Soc Hypertens. 2017;11(1):10-19. https://doi.org/10.1016/j.jash.2016.10.004
Miller ER, Juraschek SP, Appel LJ, et al. The effect of n-3 long-chain polyunsaturated fatty acid supplementation on urine protein excretion and kidney function: meta-analysis of clinical trials123. Am J Clin Nutr. 2009;89(6):1937-1945. https://doi.org/10.3945/ajcn.2008.26867
Lee CC, Adler AI. Recent findings on the effects of marine-derived n-3 polyunsaturated fatty acids on urinary albumin excretion and renal function. Curr Atheroscler Rep. 2012;14(6):535-541. https://doi.org/10.1007/s11883-012-0279-3
Eggenschwiler J, Ludwig T, Fisher P, Leighton PA, Tilghman SM, Efstratiadis A. Mouse mutant embryos overexpressing IGF-II exhibit phenotypic features of the Beckwith-Wiedemann and Simpson-Golabi-Behmel syndromes. Genes Dev. 1997;11(23):3128-3142. https://doi.org/10.1101/gad.11.23.3128
Rogler CE, Yang D, Rossetti L, et al. Altered body composition and increased frequency of diverse malignancies in insulin-like growth factor-II transgenic mice. J Biol Chem. 1994;269(19):13779-13784.
Svensson J, Tivesten Åsa, Sjögren K, et al. Liver-derived IGF-I regulates kidney size, sodium reabsorption, and renal IGF-II expression. J Endocrinol. 2007;193(3):359-366. https://doi.org/10.1677/JOE-07-0024
Guler HP, Zapf J, Scheiwiller E, Froesch ER. Recombinant human insulin-like growth factor I stimulates growth and has distinct effects on organ size in hypophysectomized rats. Proc Natl Acad Sci U S A. 1988;85(13):4889-4893. https://doi.org/10.1073/pnas.85.13.4889
Rogers SA, Ryan G, Hammerman MR. Insulin-like growth factors I and II are produced in the metanephros and are required for growth and development in vitro. J Cell Biol. 1991;113(6):1447-1453. https://doi.org/10.1083/jcb.113.6.1447
Wolf E, Kramer R, Blum WF, Föll J, Brem G. Consequences of postnatally elevated insulin-like growth factor-II in transgenic mice: endocrine changes and effects on body and organ growth. Endocrinology. 1994;135(5):1877-1886. https://doi.org/10.1210/endo.135.5.7525257
Handbook of Diabetes, 4th Edition | Diabetes | Endocrinology | Medicine, Nursing & Dentistry | Subjects | Wiley. Wiley.com. Accessed October 7, 2019. https://www.wiley.com/en-us/Handbook+of+Diabetes%2C+4th+Edition-p-9781405184090
Pighin D, Karabatas L, Rossi A, Chicco A, Basabe JC, Lombardo YB. Fish oil affects pancreatic fat storage, pyruvate dehydrogenase complex activity and insulin secretion in rats fed a sucrose-rich diet. J Nutr. 2003;133(12):4095-4101. https://doi.org/10.1093/jn/133.12.4095
Srinivasan M, Choi CS, Ghoshal P, et al. β-Cell-specific pyruvate dehydrogenase deficiency impairs glucose-stimulated insulin secretion. Am J Physiol Endocrinol Metab. 2010;299(6):E910-E917. https://doi.org/10.1152/ajpendo.00339.2010
Abbate M, Zoja C, Corna D, Capitanio M, Bertani T, Remuzzi G. In progressive nephropathies, overload of tubular cells with filtered proteins translates glomerular permeability dysfunction into cellular signals of interstitial inflammation. J Am Soc Nephrol JASN. 1998;9(7):1213-1224.
Ronco P. Proteinuria: is it all in the foot? J Clin Invest. 2007;117(8):2079-2082. https://doi.org/10.1172/JCI32966
Kerjaschki D. Dysfunctions of cell biological mechanisms of visceral epithelial cell (podocytes) in glomerular diseases. Kidney Int. 1994;45(2):300-313. https://doi.org/10.1038/ki.1994.39
Pagtalunan ME, Miller PL, Jumping-Eagle S, et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest. 1997;99(2):342-348.
Dalla Vestra M, Saller A, Mauer M, Fioretto P. Role of mesangial expansion in the pathogenesis of diabetic nephropathy. J Nephrol. 2001;14(Suppl 4):S51-57.
Chou H-H, Chiou Y-Y, Hung P-H, Chiang P-C, Wang S-T. Omega-3 fatty acids ameliorate proteinuria but not renal function in IgA nephropathy: a meta-analysis of randomized controlled trials. Nephron Clin Pract. 2012;121(1-2):c30-c35. https://doi.org/10.1159/000341929
De Caterina R, Caprioli R, Giannessi D, et al. n-3 fatty acids reduce proteinuria in patients with chronic glomerular disease. Kidney Int. 1993;44(4):843-850. https://doi.org/10.1038/ki.1993.320
Hassan IR, Gronert K. Acute changes in dietary ω-3 and ω-6 polyunsaturated fatty acids have a pronounced impact on survival following ischemic renal injury and formation of renoprotective docosahexaenoic acid-derived protectin D1. J Immunol. 2009;182(5):3223-3232. https://doi.org/10.4049/jimmunol.0802064
Breyer MD, Böttinger E, Brosius FC, et al. Mouse models of diabetic nephropathy. J Am Soc Nephrol. 2005;16(1):27-45. https://doi.org/10.1681/ASN.2004080648
Saran R, Robinson B, Abbott KC, et al. US renal data system 2018 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2019;73(3):A7-A8. https://doi.org/10.1053/j.ajkd.2019.01.001
Middleton JP, Pun PH. Hypertension, chronic kidney disease, and the development of cardiovascular risk: a joint primacy. Kidney Int. 2010;77(9):753-755. https://doi.org/10.1038/ki.2010.19
Losi MA, Memoli B, Contaldi C, et al. Myocardial fibrosis and diastolic dysfunction in patients on chronic haemodialysis. Nephrol Dial Transplant. 2010;25(6):1950-1954. https://doi.org/10.1093/ndt/gfp747
Silberberg JS, Barre PE, Prichard SS, Sniderman AD. Impact of left ventricular hypertrophy on survival in end-stage renal disease. Kidney Int. 1989;36(2):286-290. https://doi.org/10.1038/ki.1989.192
Diastolic Heart Failure-Abnormalities in Active Relaxation and Passive Stiffness of the Left Ventricle | NEJM. New England Journal of Medicine. Accessed October 8, 2019. http://www.nejm.org/doi/10.1056/NEJMoa032566?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dwww.ncbi.nlm.nih.gov
Montford JR, Linas S. How dangerous is hyperkalemia? J Am Soc Nephrol. 2017;28(11):3155-3165. https://doi.org/10.1681/ASN.2016121344
El-Sherif N, Turitto G. Electrolyte disorders and arrhythmogenesis. Cardiol J. 2011;18(3):233-245.
Cabo J, Alonso R, Mata P. Omega-3 fatty acids and blood pressure. Br J Nutr. 2012;107(Suppl 2):S195-200. https://doi.org/10.1017/S0007114512001584
Hoshi T, Wissuwa B, Tian Y, et al. Omega-3 fatty acids lower blood pressure by directly activating large-conductance Ca2+-dependent K+ channels. Proc Natl Acad Sci U S A. 2013;110(12):4816-4821. https://doi.org/10.1073/pnas.1221997110
Serhan CN, Chiang N, Dalli J, Levy BD. Lipid mediators in the resolution of inflammation. Cold Spring Harb Perspect Biol. 2015;7(2):a016311. https://doi.org/10.1101/cshperspect.a016311
Gallo LA, Ward MS, Fotheringham AK, et al. Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice. Sci Rep. 2016;6:26428. https://doi.org/10.1038/srep26428
Forclaz A, Maillard M, Nussberger J, Brunner HR, Burnier M. Angiotensin II receptor blockade: is there truly a benefit of adding an ACE inhibitor? Hypertens Dallas Tex. 2003;41(1):31-36. https://doi.org/10.1161/01.hyp.0000047512.58862.a9
Ilyas Z, Chaiban JT, Krikorian A. Novel insights into the pathophysiology and clinical aspects of diabetic nephropathy. Rev Endocr Metab Disord. 2017;18(1):21-28. https://doi.org/10.1007/s11154-017-9422-3

Auteurs

Laís R Perazza (LR)

Quebec Heart and Lung Institute, Laval University, Quebec, QC, Canada.
Institute of Nutrition and Functional Foods, Laval University, Quebec, QC, Canada.

Patricia L Mitchell (PL)

Quebec Heart and Lung Institute, Laval University, Quebec, QC, Canada.
Institute of Nutrition and Functional Foods, Laval University, Quebec, QC, Canada.

Farah Lizotte (F)

Faculty of Medicine and Health Sciences, University of Sherbrook, Sherbrooke, QC, Canada.

Benjamin A H Jensen (BAH)

Quebec Heart and Lung Institute, Laval University, Quebec, QC, Canada.
Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Human Genomics and Metagenomics in Metabolism, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Philippe St-Pierre (P)

Quebec Heart and Lung Institute, Laval University, Quebec, QC, Canada.
Institute of Nutrition and Functional Foods, Laval University, Quebec, QC, Canada.

Jocelyn Trottier (J)

CHU-Québec Research Centre, Laval University, Québec, QC, Canada.

Olivier Barbier (O)

CHU-Québec Research Centre, Laval University, Québec, QC, Canada.

Patrick Mathieu (P)

Quebec Heart and Lung Institute, Laval University, Quebec, QC, Canada.

Pedro M Geraldes (PM)

Faculty of Medicine and Health Sciences, University of Sherbrook, Sherbrooke, QC, Canada.

André Marette (A)

Quebec Heart and Lung Institute, Laval University, Quebec, QC, Canada.
Institute of Nutrition and Functional Foods, Laval University, Quebec, QC, Canada.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH