Whole-Body Regeneration in Sponges: Diversity, Fine Mechanisms, and Future Prospects.

Porifera body polarity differentiation morphogenesis transdifferentiation whole-body regeneration

Journal

Genes
ISSN: 2073-4425
Titre abrégé: Genes (Basel)
Pays: Switzerland
ID NLM: 101551097

Informations de publication

Date de publication:
29 03 2021
Historique:
received: 08 03 2021
revised: 25 03 2021
accepted: 26 03 2021
entrez: 3 4 2021
pubmed: 4 4 2021
medline: 17 8 2021
Statut: epublish

Résumé

While virtually all animals show certain abilities for regeneration after an injury, these abilities vary greatly among metazoans. Porifera (Sponges) is basal metazoans characterized by a wide variety of different regenerative processes, including whole-body regeneration (WBR). Considering phylogenetic position and unique body organization, sponges are highly promising models, as they can shed light on the origin and early evolution of regeneration in general and WBR in particular. The present review summarizes available data on the morphogenetic and cellular mechanisms accompanying different types of WBR in sponges. Sponges show a high diversity of WBR, which principally could be divided into (1) WBR from a body fragment and (2) WBR by aggregation of dissociated cells. Sponges belonging to different phylogenetic clades and even to different species and/or differing in the anatomical structure undergo different morphogeneses after similar operations. A common characteristic feature of WBR in sponges is the instability of the main body axis: a change of the organism polarity is described during all types of WBR. The cellular mechanisms of WBR are different across sponge classes, while cell dedifferentiations and transdifferentiations are involved in regeneration processes in all sponges. Data considering molecular regulation of WBR in sponges are extremely scarce. However, the possibility to achieve various types of WBR ensured by common morphogenetic and cellular basis in a single species makes sponges highly accessible for future comprehensive physiological, biochemical, and molecular studies of regeneration processes.

Identifiants

pubmed: 33805549
pii: genes12040506
doi: 10.3390/genes12040506
pmc: PMC8066720
pii:
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Références

Wilhelm Roux Arch Entwickl Mech Org. 1964 Sep;155(5):525-534
pubmed: 28354805
Development. 2020 Nov 19;147(22):
pubmed: 33093150
Nauchnye Doki Vyss Shkoly Biol Nauki. 1979;(11):5-17
pubmed: 389301
PeerJ. 2015 Aug 25;3:e1211
pubmed: 26336645
Dev Biol. 1980 Aug;78(2):484-96
pubmed: 7409311
Nature. 2000 Sep 14;407(6801):186-9
pubmed: 11001056
Biol Bull. 2018 Feb;234(1):58-67
pubmed: 29694803
Dev Dyn. 2008 Nov;237(11):3222-32
pubmed: 18924231
Dev Biol. 2007 Dec 1;312(1):131-46
pubmed: 17964563
Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12127-31
pubmed: 11050241
Curr Biol. 2017 Apr 3;27(7):958-967
pubmed: 28318975
Biotechnol Bioeng. 2003 Dec 5;84(5):583-90
pubmed: 14574692
Development. 2019 Sep 11;146(17):
pubmed: 31511248
PLoS Biol. 2007 Apr;5(4):e71
pubmed: 17341137
Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7695-9
pubmed: 11607571
Dev Biol. 1993 Feb;155(2):287-96
pubmed: 8432387
Mol Biol Evol. 2017 May 1;34(5):1083-1099
pubmed: 28104746
Tissue Cell. 1993 Jun;25(3):333-41
pubmed: 18621236
EMBO Rep. 2017 Sep;18(9):1497-1508
pubmed: 28747491
PLoS One. 2015 Aug 13;10(8):e0134566
pubmed: 26270639
Acta Biol Acad Sci Hung. 1962;13:1-30
pubmed: 14034872
Vestn Leningr Univ Biol. 1969 Aug;3:15-22
pubmed: 5396694
PeerJ. 2015 Mar 10;3:e820
pubmed: 25780772
Z Zellforsch Mikrosk Anat. 1964 Nov 20;64:708-25
pubmed: 14335073
J Exp Zool B Mol Dev Evol. 2020 Jan;334(1):37-58
pubmed: 31725194
Mech Ageing Dev. 1998 Sep 15;105(1-2):45-59
pubmed: 9922118
Wilehm Roux Arch Dev Biol. 1977 Jun;181(2):151-161
pubmed: 28304912
Curr Opin Genet Dev. 2016 Oct;40:113-119
pubmed: 27420173
Zoology (Jena). 2020 Jun;140:125795
pubmed: 32408125
Wilehm Roux Arch Dev Biol. 1977 Jun;183(2):149-153
pubmed: 28304902
Cell Tissue Res. 2010 Jun;340(3):523-31
pubmed: 20376489
Biol Bull. 2000 Feb;198(1):77-87
pubmed: 10707815
Trends Ecol Evol. 2010 Mar;25(3):161-70
pubmed: 19800144
C R Biol. 2009 Feb-Mar;332(2-3):184-209
pubmed: 19281951
Cell Rep. 2017 Feb 7;18(6):1410-1421
pubmed: 28178519
Curr Biol. 2014 May 19;24(10):1107-13
pubmed: 24768051
Microsc Res Tech. 1999 Feb 15;44(4):279-92
pubmed: 10098928
Front Cell Dev Biol. 2020 Oct 20;8:587320
pubmed: 33195242
J Exp Zool. 1992 Sep 1;263(3):284-302
pubmed: 1453156
J Exp Zool. 1972 May;180(2):217-25
pubmed: 5025442
Genes (Basel). 2021 Feb 10;12(2):
pubmed: 33578707
Evol Dev. 2010 Sep-Oct;12(5):484-93
pubmed: 20883217
Dev Biol. 2009 Jun 1;330(1):186-99
pubmed: 19217898
Methods Mol Biol. 2021;2219:81-97
pubmed: 33074535
Dev Dyn. 2013 Nov;242(11):1320-31
pubmed: 23913838
J Exp Biol. 2019 Sep 3;222(Pt 17):
pubmed: 31371401
Methods Mol Biol. 2021;2219:181-194
pubmed: 33074541
Wilehm Roux Arch Dev Biol. 1980 Feb;188(1):45-53
pubmed: 28305154
Curr Top Dev Biol. 2008;81:1-63
pubmed: 18023723
Ontogenez. 2014 Jul-Aug;45(4):250-71
pubmed: 25735148
PLoS One. 2010 May 28;5(5):e10892
pubmed: 20531940
J Exp Zool A Ecol Genet Physiol. 2016 Feb;325(2):158-77
pubmed: 26863993
J Exp Zool B Mol Dev Evol. 2009 Dec 15;312(8):885-900
pubmed: 19588490
Mar Biotechnol (NY). 2011 Aug;13(4):782-92
pubmed: 21221695
Zh Obshch Biol. 1965 Nov-Dec;26(6):690-3
pubmed: 5877342
Dev Dyn. 2004 Oct;231(2):349-58
pubmed: 15366012
Dev Biol. 1963 Aug;8:27-47
pubmed: 14043825
Int J Dev Biol. 2014;58(6-8):623-34
pubmed: 25690976
J Exp Zool B Mol Dev Evol. 2018 Sep;330(6-7):351-371
pubmed: 30421540
Nat Commun. 2014 May 20;5:3905
pubmed: 24844197
Dev Biol. 2016 Apr 1;412(1):148-159
pubmed: 26921448
J Biotechnol. 2003 Jan 23;100(2):147-59
pubmed: 12423909
Biochemistry. 1973 Jul 31;12(16):3045-50
pubmed: 4269809
Arkh Anat Gistol Embriol. 1980 Dec;79(12):80-8
pubmed: 7195702
Dev Dyn. 2003 Feb;226(2):225-36
pubmed: 12557201
J Biotechnol. 2003 Jan 23;100(2):127-39
pubmed: 12423907
Science. 2008 Jan 18;319(5861):323-7
pubmed: 18063757
Dev Biol. 2018 Jan 15;433(2):118-131
pubmed: 29198565
BMC Evol Biol. 2016 Jun 10;16(1):123
pubmed: 27287511
Bioessays. 2009 Jan;31(1):89-97
pubmed: 19154007
J Morphol. 1967 Sep;123(1):71-83
pubmed: 6063710
Dev Genes Evol. 2013 Mar;223(1-2):5-22
pubmed: 22543423

Auteurs

Alexander Ereskovsky (A)

Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Aix Marseille University, CNRS, IRD, Station Marine d'Endoume, Rue de la Batterie des Lions, Avignon University, 13007 Marseille, France.
Department of Embryology, Faculty of Biology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia.
Evolution of Morphogenesis Laboratory, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia.

Ilya E Borisenko (IE)

Department of Embryology, Faculty of Biology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia.

Fyodor V Bolshakov (FV)

Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, 119192 Moscow, Russia.

Andrey I Lavrov (AI)

Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, 119192 Moscow, Russia.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH