ROS-Mediated Apoptosis and Autophagy in Ovarian Cancer Cells Treated with Peanut-Shaped Gold Nanoparticles.


Journal

International journal of nanomedicine
ISSN: 1178-2013
Titre abrégé: Int J Nanomedicine
Pays: New Zealand
ID NLM: 101263847

Informations de publication

Date de publication:
2021
Historique:
received: 19 08 2020
accepted: 08 12 2020
entrez: 17 3 2021
pubmed: 18 3 2021
medline: 7 4 2021
Statut: epublish

Résumé

Even with considerable improvement in treatment of epithelial ovarian cancer achieved in recent years, an increasing chemotherapy resistance and disease 5-year relapse is recorded for a majority part of patients that encourages the search for better therapeutic options. Gold nanoparticles (Au NPs) due to plethora of unique physiochemical features are thoroughly tested as drug delivery, radiosensitizers, as well as photothermal and photodynamic therapy agents. Importantly, due to highly controlled synthesis, it is possible to obtain nanomaterials with directed size and shape. In this work, we developed novel elongated-type gold nanoparticles in the shape of nanopeanuts (AuP NPs) and investigated their cytotoxic potential against ovarian cancer cells SKOV-3 using colorimetric and fluorimetric methods, Western blot, flow cytometry, and fluorescence microscopy. Peanut-shaped gold nanoparticles showed high anti-cancer activity in vitro against SKOV-3 cells at doses of 1-5 ng/mL upon 72 hours treatment. We demonstrate that AuP NPs decrease the viability and proliferation capability of ovarian cancer cells by triggering cell apoptosis and autophagy, as evidenced by flow cytometry and Western blot analyses. The overproduction of reactive oxygen species (ROS) was noted to be a critical mediator of AuP NPs-mediated cell death. These data indicate that gold nanopeanuts might be developed as nanotherapeutics against ovarian cancer.

Sections du résumé

BACKGROUND BACKGROUND
Even with considerable improvement in treatment of epithelial ovarian cancer achieved in recent years, an increasing chemotherapy resistance and disease 5-year relapse is recorded for a majority part of patients that encourages the search for better therapeutic options. Gold nanoparticles (Au NPs) due to plethora of unique physiochemical features are thoroughly tested as drug delivery, radiosensitizers, as well as photothermal and photodynamic therapy agents. Importantly, due to highly controlled synthesis, it is possible to obtain nanomaterials with directed size and shape.
METHODS METHODS
In this work, we developed novel elongated-type gold nanoparticles in the shape of nanopeanuts (AuP NPs) and investigated their cytotoxic potential against ovarian cancer cells SKOV-3 using colorimetric and fluorimetric methods, Western blot, flow cytometry, and fluorescence microscopy.
RESULTS RESULTS
Peanut-shaped gold nanoparticles showed high anti-cancer activity in vitro against SKOV-3 cells at doses of 1-5 ng/mL upon 72 hours treatment. We demonstrate that AuP NPs decrease the viability and proliferation capability of ovarian cancer cells by triggering cell apoptosis and autophagy, as evidenced by flow cytometry and Western blot analyses. The overproduction of reactive oxygen species (ROS) was noted to be a critical mediator of AuP NPs-mediated cell death.
CONCLUSION CONCLUSIONS
These data indicate that gold nanopeanuts might be developed as nanotherapeutics against ovarian cancer.

Identifiants

pubmed: 33727811
doi: 10.2147/IJN.S277014
pii: 277014
pmc: PMC7955786
doi:

Substances chimiques

Apoptosis Regulatory Proteins 0
Reactive Oxygen Species 0
Gold 7440-57-5

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1993-2011

Informations de copyright

© 2021 Piktel et al.

Déclaration de conflit d'intérêts

JD and MP-W have a patent pending for synthesis and anti-cancer activity of gold nanopeanuts. The authors report no conflicts of interest for this work.

Références

Cancer Res. 1989 Nov 1;49(21):5922-30
pubmed: 2790807
Int J Mol Sci. 2018 Oct 25;19(11):
pubmed: 30366384
Int J Mol Sci. 2019 Dec 31;21(1):
pubmed: 31906108
Int J Mol Med. 2019 Feb;43(2):967-979
pubmed: 30569134
J Mater Chem B. 2015 Apr 28;3(16):3324-3330
pubmed: 26301093
Nanotoxicology. 2011 Jun;5(2):254-68
pubmed: 21050076
Nanoscale Res Lett. 2019 Apr 11;14(1):129
pubmed: 30976946
Oncotarget. 2011 Jan-Feb;2(1-2):59-68
pubmed: 21378416
Expert Rev Anticancer Ther. 2010 Jan;10(1):47-60
pubmed: 20014885
Biomark Cancer. 2019 Jul 05;11:1179299X19860815
pubmed: 31308780
Cell Death Dis. 2013 Mar 21;4:e552
pubmed: 23519121
Nat Biomed Eng. 2017;1:
pubmed: 28649464
Toxicol Lett. 1985 Feb-Mar;24(2-3):119-24
pubmed: 3983963
Circ Res. 2010 Apr 16;106(7):1253-64
pubmed: 20185797
World J Transl Med. 2014 Apr 12;3(1):1-8
pubmed: 25525571
Curr Top Med Chem. 2015;15(16):1605-13
pubmed: 25877087
J Mater Sci Mater Med. 2017 Jun;28(6):92
pubmed: 28497362
J Mater Chem B. 2018 Mar 21;6(11):1633-1639
pubmed: 32254279
Biochim Biophys Acta. 2006 Feb;1763(2):214-25
pubmed: 16458373
Nature. 1970 Aug 15;227(5259):680-5
pubmed: 5432063
Oxid Med Cell Longev. 2019 Jun 10;2019:3150145
pubmed: 31281572
Dev Cell. 2003 Apr;4(4):587-98
pubmed: 12689596
Int J Oncol. 2020 Jun;56(6):1417-1428
pubmed: 32236589
Prostate. 2006 Sep 15;66(13):1413-24
pubmed: 16741918
Redox Biol. 2017 Oct;13:608-622
pubmed: 28806703
Bioact Mater. 2018 May 15;3(3):347-354
pubmed: 29992194
Toxicol Pathol. 2007 Jun;35(4):495-516
pubmed: 17562483
Molecules. 2017 Aug 31;22(9):
pubmed: 28858253
Cell Death Discov. 2019 Aug 5;5:125
pubmed: 31396402
Biochem Biophys Res Commun. 2018 May 27;500(1):26-34
pubmed: 28676391
J Am Chem Soc. 2006 Feb 15;128(6):2115-20
pubmed: 16464114
Cancer Lett. 2014 May 28;347(1):46-53
pubmed: 24556077
Br J Radiol. 2012 Feb;85(1010):101-13
pubmed: 22010024
Cancer Biol Ther. 2010 Aug 1;10(3):223-31
pubmed: 20523116
Nanomedicine. 2015 Nov;11(8):2083-98
pubmed: 26115635
Sci Rep. 2019 Oct 17;9(1):14912
pubmed: 31624285
Bioconjug Chem. 2017 Feb 15;28(2):449-460
pubmed: 27992181
Biochemistry. 2010 Feb 9;49(5):835-42
pubmed: 20050630
J Biomed Mater Res A. 2015 Nov;103(11):3449-62
pubmed: 25904210
Chin J Cancer. 2013 Mar;32(3):121-9
pubmed: 23114086
Int J Mol Sci. 2018 Jul 06;19(7):
pubmed: 29986450
Anal Chem. 2004 Jul 1;76(13):3727-34
pubmed: 15228347
Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11460-4
pubmed: 1763060
J Phys Chem B. 2006 Apr 13;110(14):7238-48
pubmed: 16599493
Nano Lett. 2006 Aug;6(8):1794-807
pubmed: 16895376
Free Radic Biol Med. 2006 Mar 15;40(6):928-39
pubmed: 16540388
Sci Rep. 2015 Jun 22;5:11398
pubmed: 26096816
Nanotechnology. 2017 Nov 24;28(47):475101
pubmed: 29027909
Nanomedicine. 2011 Oct;7(5):580-7
pubmed: 21333757
Free Radic Biol Med. 2011 Oct 1;51(7):1289-301
pubmed: 21777669
Small. 2011 Jan 17;7(2):169-83
pubmed: 21213377
J Nanobiotechnology. 2016 May 26;14(1):39
pubmed: 27229857
Br J Pharmacol. 2001 May;133(2):217-28
pubmed: 11350857
Ann Transl Med. 2019 Oct;7(20):539
pubmed: 31807521
ACS Nano. 2016 Feb 23;10(2):2375-85
pubmed: 26761620
Oncogene. 2008 Oct 20;27(48):6194-206
pubmed: 18931687
Biochim Biophys Acta. 2016 Dec;1863(12):2977-2992
pubmed: 27646922
ACS Nano. 2014 Dec 23;8(12):12450-60
pubmed: 25375246
Small. 2009 Mar;5(6):701-8
pubmed: 19226599
Int J Oncol. 2018 Jan;52(1):189-200
pubmed: 29115423
Oncotarget. 2018 Apr 24;9(31):21904-21920
pubmed: 29774111
Oncology (Williston Park). 2004 May;18(5):645-53, discussion 653-4, 656, 658
pubmed: 15209191
J Mater Chem B. 2015 May 14;3(18):3820-3830
pubmed: 32262856
Adv Exp Med Biol. 2008;615:47-79
pubmed: 18437891
J Cancer. 2020 Aug 10;11(20):5900-5910
pubmed: 32922532
Nanomedicine. 2015 Aug;11(6):1365-75
pubmed: 25888279
Adv Drug Deliv Rev. 1999 Nov 10;40(1-2):75-87
pubmed: 10837781
Nanomedicine (Lond). 2016 Aug;11(15):1993-2006
pubmed: 27256301
Clin Cancer Res. 2009 Sep 1;15(17):5308-16
pubmed: 19706824
Nano Lett. 2006 Apr;6(4):662-8
pubmed: 16608261

Auteurs

Ewelina Piktel (E)

Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, 15-222, Poland.

Ilona Ościłowska (I)

Department of Medicinal Chemistry, Medical University of Bialystok, Bialystok, 15-222, Poland.

Łukasz Suprewicz (Ł)

Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, 15-222, Poland.

Joanna Depciuch (J)

Institute of Nuclear Physics Polish Academy of Sciences, Krakow, PL-31342, Poland.

Natalia Marcińczyk (N)

Department of Biopharmacy, Medical University of Bialystok, Bialystok, 15-222, Poland.

Ewa Chabielska (E)

Department of Biopharmacy, Medical University of Bialystok, Bialystok, 15-222, Poland.

Przemysław Wolak (P)

Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, Kielce, 25-317, Poland.

Tomasz Wollny (T)

Holy Cross Cancer Center in Kielce, Kielce, 25-734, Poland.

Marianna Janion (M)

Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, Kielce, 25-317, Poland.

Magdalena Parlinska-Wojtan (M)

Institute of Nuclear Physics Polish Academy of Sciences, Krakow, PL-31342, Poland.

Robert Bucki (R)

Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, 15-222, Poland.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH