STAU2 protein level is controlled by caspases and the CHK1 pathway and regulates cell cycle progression in the non-transformed hTERT-RPE1 cells.


Journal

BMC molecular and cell biology
ISSN: 2661-8850
Titre abrégé: BMC Mol Cell Biol
Pays: England
ID NLM: 101741148

Informations de publication

Date de publication:
04 Mar 2021
Historique:
received: 21 08 2020
accepted: 22 02 2021
entrez: 5 3 2021
pubmed: 6 3 2021
medline: 12 10 2021
Statut: epublish

Résumé

Staufen2 (STAU2) is an RNA binding protein involved in the posttranscriptional regulation of gene expression. In neurons, STAU2 is required to maintain the balance between differentiation and proliferation of neural stem cells through asymmetric cell division. However, the importance of controlling STAU2 expression for cell cycle progression is not clear in non-neuronal dividing cells. We recently showed that STAU2 transcription is inhibited in response to DNA-damage due to E2F1 displacement from the STAU2 gene promoter. We now study the regulation of STAU2 steady-state levels in unstressed cells and its consequence for cell proliferation. CRISPR/Cas9-mediated and RNAi-dependent STAU2 depletion in the non-transformed hTERT-RPE1 cells both facilitate cell proliferation suggesting that STAU2 expression influences pathway(s) linked to cell cycle controls. Such effects are not observed in the CRISPR STAU2-KO cancer HCT116 cells nor in the STAU2-RNAi-depleted HeLa cells. Interestingly, a physiological decrease in the steady-state level of STAU2 is controlled by caspases. This effect of peptidases is counterbalanced by the activity of the CHK1 pathway suggesting that STAU2 partial degradation/stabilization fines tune cell cycle progression in unstressed cells. A large-scale proteomic analysis using STAU2/biotinylase fusion protein identifies known STAU2 interactors involved in RNA translation, localization, splicing, or decay confirming the role of STAU2 in the posttranscriptional regulation of gene expression. In addition, several proteins found in the nucleolus, including proteins of the ribosome biogenesis pathway and of the DNA damage response, are found in close proximity to STAU2. Strikingly, many of these proteins are linked to the kinase CHK1 pathway, reinforcing the link between STAU2 functions and the CHK1 pathway. Indeed, inhibition of the CHK1 pathway for 4 h dissociates STAU2 from proteins involved in translation and RNA metabolism. These results indicate that STAU2 is involved in pathway(s) that control(s) cell proliferation, likely via mechanisms of posttranscriptional regulation, ribonucleoprotein complex assembly, genome integrity and/or checkpoint controls. The mechanism by which STAU2 regulates cell growth likely involves caspases and the kinase CHK1 pathway.

Sections du résumé

BACKGROUND BACKGROUND
Staufen2 (STAU2) is an RNA binding protein involved in the posttranscriptional regulation of gene expression. In neurons, STAU2 is required to maintain the balance between differentiation and proliferation of neural stem cells through asymmetric cell division. However, the importance of controlling STAU2 expression for cell cycle progression is not clear in non-neuronal dividing cells. We recently showed that STAU2 transcription is inhibited in response to DNA-damage due to E2F1 displacement from the STAU2 gene promoter. We now study the regulation of STAU2 steady-state levels in unstressed cells and its consequence for cell proliferation.
RESULTS RESULTS
CRISPR/Cas9-mediated and RNAi-dependent STAU2 depletion in the non-transformed hTERT-RPE1 cells both facilitate cell proliferation suggesting that STAU2 expression influences pathway(s) linked to cell cycle controls. Such effects are not observed in the CRISPR STAU2-KO cancer HCT116 cells nor in the STAU2-RNAi-depleted HeLa cells. Interestingly, a physiological decrease in the steady-state level of STAU2 is controlled by caspases. This effect of peptidases is counterbalanced by the activity of the CHK1 pathway suggesting that STAU2 partial degradation/stabilization fines tune cell cycle progression in unstressed cells. A large-scale proteomic analysis using STAU2/biotinylase fusion protein identifies known STAU2 interactors involved in RNA translation, localization, splicing, or decay confirming the role of STAU2 in the posttranscriptional regulation of gene expression. In addition, several proteins found in the nucleolus, including proteins of the ribosome biogenesis pathway and of the DNA damage response, are found in close proximity to STAU2. Strikingly, many of these proteins are linked to the kinase CHK1 pathway, reinforcing the link between STAU2 functions and the CHK1 pathway. Indeed, inhibition of the CHK1 pathway for 4 h dissociates STAU2 from proteins involved in translation and RNA metabolism.
CONCLUSIONS CONCLUSIONS
These results indicate that STAU2 is involved in pathway(s) that control(s) cell proliferation, likely via mechanisms of posttranscriptional regulation, ribonucleoprotein complex assembly, genome integrity and/or checkpoint controls. The mechanism by which STAU2 regulates cell growth likely involves caspases and the kinase CHK1 pathway.

Identifiants

pubmed: 33663378
doi: 10.1186/s12860-021-00352-y
pii: 10.1186/s12860-021-00352-y
pmc: PMC7934504
doi:

Substances chimiques

Nerve Tissue Proteins 0
RNA-Binding Proteins 0
STAU2 protein, human 0
CHEK1 protein, human EC 2.7.11.1
Checkpoint Kinase 1 EC 2.7.11.1
Caspases EC 3.4.22.-

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

16

Subventions

Organisme : Natural Sciences and Engineering Research Council of Canada
ID : RGPIN-2019-05027

Références

PLoS One. 2010 Jun 28;5(6):e11350
pubmed: 20596529
BMC Cell Biol. 2017 Jul 14;18(1):25
pubmed: 28705199
PLoS Genet. 2009 Jan;5(1):e1000324
pubmed: 19119425
Genome Biol. 2011 Aug 18;12(8):R78
pubmed: 21851590
Nat Methods. 2013 Aug;10(8):730-6
pubmed: 23921808
Oncogene. 2018 May;37(18):2351-2366
pubmed: 29429989
Neuron. 2001 Nov 8;32(3):463-75
pubmed: 11709157
PLoS One. 2009 Dec 17;4(12):e8348
pubmed: 20020055
J Cell Biol. 2006 Jan 16;172(2):221-31
pubmed: 16418534
Genes Dev. 2003 Jun 15;17(12):1497-506
pubmed: 12783853
Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):405-12
pubmed: 23263869
Trends Cell Biol. 2018 Jun;28(6):475-493
pubmed: 29551258
Genesis. 2012 Mar;50(3):251-9
pubmed: 22162130
Cell Stem Cell. 2012 Oct 5;11(4):505-16
pubmed: 22902295
Learn Mem. 2011 Apr 20;18(5):314-26
pubmed: 21508097
Nat Struct Mol Biol. 2016 Jun 7;23(6):509-10
pubmed: 27273637
Oncogene. 2011 Jan 27;30(4):434-44
pubmed: 20856207
Genome Biol. 2013 Apr 17;14(4):111
pubmed: 23594443
Oncogenesis. 2013 Sep 16;2:e71
pubmed: 24042735
J Cell Sci. 2002 Aug 15;115(Pt 16):3285-95
pubmed: 12140260
Cell Mol Life Sci. 2006 Dec;63(24):2886-8
pubmed: 17115120
Trends Genet. 2013 May;29(5):318-27
pubmed: 23415593
Mol Biol Cell. 2016 Apr 15;27(8):1188-96
pubmed: 26912792
DNA Repair (Amst). 2014 Jul;19:84-94
pubmed: 24746923
Mol Cell Neurosci. 2012 Nov;51(3-4):101-11
pubmed: 22940085
J Biol Chem. 2004 Jul 23;279(30):31440-4
pubmed: 15166236
Nat Cell Biol. 2004 Jul;6(7):648-55
pubmed: 15220931
Science. 2003 Jun 6;300(5625):1542-8
pubmed: 12791985
Mol Cell. 2009 Jul 31;35(2):228-39
pubmed: 19647519
Mol Biol Cell. 2005 Jan;16(1):405-20
pubmed: 15525674
Cold Spring Harb Perspect Biol. 2013 Apr 01;5(4):a008656
pubmed: 23545416
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20752-7
pubmed: 19091954
Cell Cycle. 2003 Nov-Dec;2(6):604-9
pubmed: 14504477
Nat Rev Genet. 2008 Mar;9(3):204-17
pubmed: 18227811
Nat Cell Biol. 2006 Jan;8(1):37-45
pubmed: 16327781
Cell Cycle. 2016 Oct;15(19):2608-2618
pubmed: 27433972
Cell. 2015 Jul 16;162(2):425-440
pubmed: 26186194
J Nucleic Acids. 2010 Jul 25;2010:
pubmed: 20798862
Cold Spring Harb Perspect Biol. 2012 Dec 01;4(12):
pubmed: 23209150
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):E3879-E3887
pubmed: 29636419
Genes Cells. 2012 Feb;17(2):83-97
pubmed: 22244258
Nucleic Acids Res. 2016 May 5;44(8):3695-712
pubmed: 26843428
Nature. 2009 Oct 22;461(7267):1071-8
pubmed: 19847258
Acta Biochim Biophys Sin (Shanghai). 2018 May 1;50(5):433-439
pubmed: 29554194
Genes Dev. 2006 Jul 15;20(14):1838-47
pubmed: 16847344
Semin Cell Dev Biol. 2018 Oct;82:118-126
pubmed: 29102718
J Neurochem. 2006 Jan;96(1):105-17
pubmed: 16277607
Int J Cancer. 2014 Mar 1;134(5):1013-23
pubmed: 23613359
Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16090-5
pubmed: 20805465
Mol Cell Biol. 2001 Jul;21(13):4129-39
pubmed: 11390642
Curr Biol. 2014 May 19;24(10):R435-44
pubmed: 24845676
RNA. 2008 Feb;14(2):324-35
pubmed: 18094122
Nat Rev Genet. 2007 Jul;8(7):533-43
pubmed: 17572691
Cell Div. 2010 Sep 02;5:21
pubmed: 20813042
Cell Mol Life Sci. 2013 Nov;70(21):4009-21
pubmed: 23508805
Wiley Interdiscip Rev RNA. 2017 Jan;8(1):
pubmed: 27659605
Neurobiol Learn Mem. 2018 Apr;150:107-115
pubmed: 29496644
Oncogene. 2008 Oct 20;27(48):6194-206
pubmed: 18931687
Nat Cell Biol. 2018 Jul;20(7):789-799
pubmed: 29941930
Int J Mol Cell Med. 2017 Winter;6(1):1-12
pubmed: 28868264
J Cancer Prev. 2017 Dec;22(4):203-210
pubmed: 29302577
Cell Stem Cell. 2012 Oct 5;11(4):517-28
pubmed: 22902294
Genome Biol. 2017 Nov 17;18(1):222
pubmed: 29149906
Trends Genet. 2008 Aug;24(8):416-25
pubmed: 18597886
Dev Biol. 2006 Apr 15;292(2):393-406
pubmed: 16513105
Trends Biochem Sci. 2005 May;30(5):228-31
pubmed: 15896738
Curr Opin Genet Dev. 2018 Feb;48:112-120
pubmed: 29216518
Genes Dev. 2013 Jul 1;27(13):1495-510
pubmed: 23824540
Genomics. 1999 Nov 15;62(1):113-8
pubmed: 10585778
Mol Biol Cell. 2006 Jan;17(1):402-12
pubmed: 16280359
Nat Biotechnol. 2018 Oct;36(9):880-887
pubmed: 30125270
Invest Ophthalmol Vis Sci. 2009 Dec;50(12):5965-74
pubmed: 19578024
Nat Rev Mol Cell Biol. 2016 Sep;17(9):553-63
pubmed: 27435505
Nat Methods. 2011 Jan;8(1):70-3
pubmed: 21131968
Cell Host Microbe. 2015 Dec 9;18(6):723-35
pubmed: 26651948
Mol Cell. 2017 Aug 3;67(3):387-399.e5
pubmed: 28712728
Trends Cancer. 2017 Jul;3(7):506-528
pubmed: 28718405
Cell. 1993 Jan 15;72(1):131-42
pubmed: 8422676

Auteurs

Lionel Condé (L)

Département de Biochimie et Médecine Moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC, H3T 1J4, Canada.

Yulemi Gonzalez Quesada (Y)

Département de Biochimie et Médecine Moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC, H3T 1J4, Canada.

Florence Bonnet-Magnaval (F)

Département de Biochimie et Médecine Moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC, H3T 1J4, Canada.

Rémy Beaujois (R)

Département de Biochimie et Médecine Moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC, H3T 1J4, Canada.

Luc DesGroseillers (L)

Département de Biochimie et Médecine Moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC, H3T 1J4, Canada. luc.desgroseillers@umontreal.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH