miR-139-5p promotes neovascularization in diabetic retinopathy by regulating the phosphatase and tensin homolog.
Diabetic retinopathy
Phosphatase and tensin homolog
Retinal neovascularization
miR-139-5p
Journal
Archives of pharmacal research
ISSN: 1976-3786
Titre abrégé: Arch Pharm Res
Pays: Korea (South)
ID NLM: 8000036
Informations de publication
Date de publication:
Feb 2021
Feb 2021
Historique:
received:
28
07
2020
accepted:
13
01
2021
pubmed:
21
2
2021
medline:
22
9
2021
entrez:
20
2
2021
Statut:
ppublish
Résumé
Pathological retinal neovascularization is a driver of the progression of diabetic retinopathy (DR). The present study sought to identify the microRNAs (miRNAs) that are differentially expressed during the progression of DR as well as to explore the specific regulatory mechanism of those miRNAs in retinal neovascularization. Using a microarray data set and a diabetic mouse model, it was determined that miR-139-5p was significantly upregulated during the progression of DR. The in vitro investigation revealed an elevation in the miR-139-5p level in both the high glucose (HG)-treated mouse retinal microvascular endothelial cells (mRMECs) and the HG-treated human RMECs (hRMECs). The miR-139-5p overexpression elevated cell migration, facilitated tube formation, and increased vascular endothelial growth factor (VEGF) protein level in the hRMECs. While the angiogenic effect of miR-139-5p overexpression was halted by an anti-VEGF antibody. Meanwhile, the miR-139-5p knockdown eliminated the VEGF-induced cell migration and tube formation in the hRMECs. The phosphatase and tensin homolog (PTEN) was the target gene of the miR-139-5p. PTEN overexpression removed the angiogenic effect of miR-139-5p overexpression, which led to reduced cell migration and tube formation. In the diabetic mice, the miR-139-5p antagomir effectively decreased the acellular capillaries and suppressed the formation of aberrant blood vessels in the retinal tissues. Taken together, miR-139-5p promotes retinal neovascularization by repressing PTEN expression.
Identifiants
pubmed: 33609236
doi: 10.1007/s12272-021-01308-8
pii: 10.1007/s12272-021-01308-8
doi:
Substances chimiques
MIRN139 microRNA, mouse
0
MicroRNAs
0
PTEN Phosphohydrolase
EC 3.1.3.67
Pten protein, mouse
EC 3.1.3.67
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
205-218Références
Ackah E, Yu J, Zoellner S, Iwakiri Y, Skurk C, Shibata R, Ouchi N, Easton RM, Galasso G, Birnbaum MJ, Walsh K, Sessa WC (2005) Akt1/protein kinase Balpha is critical for ischemic and VEGF-mediated angiogenesis. J Clin Investig 115:2119–2127. https://doi.org/10.1172/jci24726
doi: 10.1172/jci24726
pubmed: 16075056
Ades EW, Candal FJ, Swerlick RA, George VG, Summers S, Bosse DC, Lawley TJ (1992) HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol 99:683–690. https://doi.org/10.1111/1523-1747.ep12613748
doi: 10.1111/1523-1747.ep12613748
pubmed: 1361507
Boraas LC, Ahsan T (2016) Lack of vimentin impairs endothelial differentiation of embryonic stem cells. Sci Rep 6:30814. https://doi.org/10.1038/srep30814
doi: 10.1038/srep30814
pubmed: 27480130
pmcid: 4969593
Cantley LC, Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 96:4240–4245. https://doi.org/10.1073/pnas.96.8.4240
doi: 10.1073/pnas.96.8.4240
pubmed: 10200246
Frank RN (2004) Diabetic retinopathy. N Engl J Med 350:48–58. https://doi.org/10.1056/NEJMra021678
doi: 10.1056/NEJMra021678
pubmed: 14702427
Gardiner TA, Gibson DS, de Gooyer TE, de la Cruz VF, McDonald DM, Stitt AW (2005) Inhibition of tumor necrosis factor-alpha improves physiological angiogenesis and reduces pathological neovascularization in ischemic retinopathy. Am J Pathol 166:637–644. https://doi.org/10.1016/s0002-9440(10)62284-5
doi: 10.1016/s0002-9440(10)62284-5
pubmed: 15681845
pmcid: 1602321
Hammer SS, Busik JV (2017) The role of dyslipidemia in diabetic retinopathy. Vision Res 139:228–236. https://doi.org/10.1016/j.visres.2017.04.010
doi: 10.1016/j.visres.2017.04.010
pubmed: 28545981
pmcid: 5702582
Hu C, Sun Y, Yang X (2020) Pioglitazone up-regulates MALAT1 and promotes the proliferation of endothelial progenitor cells through increasing c-Myc expression in type 2 diabetes mellitus. Aging Pathobiol Therapeut 2:38–44. https://doi.org/10.31491/apt.2020.03.011
doi: 10.31491/apt.2020.03.011
Hua S, Lei L, Deng L, Weng X, Liu C, Qi X, Wang S, Zhang D, Zou X, Cao C, Liu L, Wu D (2018) miR-139-5p inhibits aerobic glycolysis, cell proliferation, migration, and invasion in hepatocellular carcinoma via a reciprocal regulatory interaction with ETS1. Oncogene 37:1624–1636. https://doi.org/10.1038/s41388-017-0057-3
doi: 10.1038/s41388-017-0057-3
pubmed: 29335523
Jiang B-H, Liu L-Z (2009) PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res 102:19–65. https://doi.org/10.1016/S0065-230X(09)02002-8
doi: 10.1016/S0065-230X(09)02002-8
pubmed: 19595306
pmcid: 2933405
Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610. https://doi.org/10.1038/nrg2843
doi: 10.1038/nrg2843
pubmed: 20661255
Lu JM, Zhang ZZ, Ma X, Fang SF, Qin XH (2020) Repression of microRNA-21 inhibits retinal vascular endothelial cell growth and angiogenesis via PTEN dependent-PI3K/Akt/VEGF signaling pathway in diabetic retinopathy. Exp Eye Res 190:107886. https://doi.org/10.1016/j.exer.2019.107886
doi: 10.1016/j.exer.2019.107886
pubmed: 31759996
Ma J, Zhang J, Weng YC, Wang JC (2018) EZH2-Mediated microRNA-139-5p regulates epithelial-mesenchymal transition and lymph node metastasis of pancreatic cancer. Mol Cells 41:868–880. https://doi.org/10.14348/molcells.2018.0109
doi: 10.14348/molcells.2018.0109
pubmed: 30304920
pmcid: 6182224
Martinez B, Peplow PV (2019) MicroRNAs as biomarkers of diabetic retinopathy and disease progression. Neural Regen Res 14:1858–1869. https://doi.org/10.4103/1673-5374.259602
doi: 10.4103/1673-5374.259602
pubmed: 31290435
pmcid: 6676865
Miller JW, Le Couter J, Strauss EC, Ferrara N (2013) Vascular endothelial growth factor a in intraocular vascular disease. Ophthalmology 120:106–114. https://doi.org/10.1016/j.ophtha.2012.07.038
doi: 10.1016/j.ophtha.2012.07.038
pubmed: 23031671
Qiu H, Ma L, Feng F (2020) PICK1 attenuates high glucose-induced pancreatic β-cell death through the PI3K/Akt pathway and is negatively regulated by miR-139-5p. Biochem Biophys Res Commun 522:14–20. https://doi.org/10.1016/j.bbrc.2019.11.051
doi: 10.1016/j.bbrc.2019.11.051
pubmed: 31735337
Shao Y, Dong L-J, Takahashi Y, Chen J, Liu X, Chen Q, Ma J-X, Li X-R (2019) miRNA-451a regulates RPE function through promoting mitochondrial function in proliferative diabetic retinopathy. Am J Physiol Endocrinol Metab 316:E443–E452. https://doi.org/10.1152/ajpendo.00360.2018
doi: 10.1152/ajpendo.00360.2018
pubmed: 30576241
Shi X, Liao S, Mi H, Guo C, Qi D, Li F, Zhang C, Yang Z (2012) Hesperidin prevents retinal and plasma abnormalities in streptozotocin-induced diabetic rats. Molecules 17:12868–12881. https://doi.org/10.3390/molecules171112868
doi: 10.3390/molecules171112868
pubmed: 23117428
pmcid: 6268103
Usui-Ouchi A, Ouchi Y, Kiyokawa M, Sakuma T, Ito R, Ebihara N (2016) Upregulation of Mir-21 levels in the vitreous humor is associated with development of proliferative vitreoretinal disease. PLoS ONE 11:e0158043–e0158043. https://doi.org/10.1371/journal.pone.0158043
doi: 10.1371/journal.pone.0158043
pubmed: 27351379
pmcid: 4924816
Waisbourd M, Goldstein M, Loewenstein A (2011) Treatment of diabetic retinopathy with anti-VEGF drugs. Acta Ophthalmol 89:203–207. https://doi.org/10.1111/j.1755-3768.2010.02010.x
doi: 10.1111/j.1755-3768.2010.02010.x
pubmed: 21044274
Wei H, Huang L, Wei F, Li G, Huang B, Li J, Cao C (2020) Up-regulation of miR-139-5p protects diabetic mice from liver tissue damage and oxidative stress through inhibiting Notch signaling pathway. Acta Biochim Biophys Sin 52:390–400. https://doi.org/10.1093/abbs/gmaa008
doi: 10.1093/abbs/gmaa008
pubmed: 32293663
Xia F, Sun JJ, Jiang YQ, Li CF (2018) MicroRNA-384-3p inhibits retinal neovascularization through targeting hexokinase 2 in mice with diabetic retinopathy. J Cell Physiol 234:721–730. https://doi.org/10.1002/jcp.26871
doi: 10.1002/jcp.26871
pubmed: 30191948
Ye Z, Li Z-H, He S-Z (2017) miRNA-1273g-3p involvement in development of diabetic retinopathy by modulating the autophagy-lysosome pathway. Med Sci Monit 23:5744–5751. https://doi.org/10.12659/msm.905336
doi: 10.12659/msm.905336
pubmed: 29197896
pmcid: 5724349
Zha X, Xi X, Fan X, Ma M, Zhang Y, Yang Y (2020) Overexpression of METTL3 attenuates high-glucose induced RPE cell pyroptosis by regulating miR-25-3p/PTEN/Akt signaling cascade through DGCR8. Aging 12:8137–8150. https://doi.org/10.18632/aging.103130
doi: 10.18632/aging.103130
pubmed: 32365051
pmcid: 7244028
Zhang XL, Liu Z (2020) MiR-19a inhibitor improves diabetic retinopathy in rats through PTEN/Akt/P-Akt signaling pathway. J Biol Regul Homeost Agents 34:509–515. https://doi.org/10.23812/20-77-a-60
doi: 10.23812/20-77-a-60
pubmed: 32450680
Zhou M, Li G, Zhu L, Zhou H, Lu L (2020) Arctiin attenuates high glucose-induced human retinal capillary endothelial cell proliferation by regulating ROCK1/PTEN/PI3K/Akt/VEGF pathway in vitro. J Cell Mol Med 24:5695–5706. https://doi.org/10.1111/jcmm.15232
doi: 10.1111/jcmm.15232
pubmed: 32297701
pmcid: 7214144