Enhanced Ca
Biological Transport
Calcium
/ metabolism
Calcium Channels
/ metabolism
Egtazic Acid
/ analogs & derivatives
Erythrocytes
/ metabolism
Female
Fluorine
Fluorine-19 Magnetic Resonance Imaging
/ methods
Glucose
Glycolysis
Humans
Ion Channels
/ metabolism
Magnetic Resonance Spectroscopy
/ methods
Male
Mechanotransduction, Cellular
/ physiology
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
12 02 2021
12 02 2021
Historique:
received:
12
11
2020
accepted:
19
01
2021
entrez:
13
2
2021
pubmed:
14
2
2021
medline:
29
12
2021
Statut:
epublish
Résumé
We present the first direct nuclear magnetic resonance (NMR) evidence of enhanced entry of Ca
Identifiants
pubmed: 33580124
doi: 10.1038/s41598-021-83044-z
pii: 10.1038/s41598-021-83044-z
pmc: PMC7881017
doi:
Substances chimiques
1,2-bis(2-aminophenoxy)ethane-5,5'-difluoro-N,N,N',N'-tetraacetic acid acetoxymethyl ester
0
Calcium Channels
0
Ion Channels
0
PIEZO1 protein, human
0
Fluorine
284SYP0193
Egtazic Acid
526U7A2651
5,5'-difluoro-1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid
85233-21-2
Glucose
IY9XDZ35W2
Calcium
SY7Q814VUP
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3749Références
Kuchel, P. W. & Shishmarev, D. Accelerating metabolism and transmembrane cation flux by distorting red blood cells. Sci. Adv. 3(10), 1016 (2017).
doi: 10.1126/sciadv.aao1016
Shishmarev, D., Momot, K. I. & Kuchel, P. W. Anisotropic diffusion in stretched hydrogels containing erythrocytes: evidence of cell-shape distortion recorded by PGSE NMR spectroscopy. Magn. Reson. Chem. 55(5), 438–446 (2017).
pubmed: 26914993
doi: 10.1002/mrc.4416
Wellard, R. M. et al. Factors affecting
doi: 10.1006/jmrb.1994.1085
Kuchel, P. W. et al. NMR of
pubmed: 26561738
doi: 10.1016/j.jmr.2015.10.011
Kuchel, P. W., Kirk, K. & Shishmarev, D. The NMR ‘split peak effect’ in cell suspensions: historical perspective, explanation and applications. Prog. Nucl. Magn. Reson. Spectrosc. 104, 1–11 (2018).
pubmed: 29405979
doi: 10.1016/j.pnmrs.2017.11.002
Springer, C. S. Jr. et al. Use of shift reagents for nuclear magnetic resonance studies of the kinetics of ion transfer in cells and perfused hearts. Circulation 72(5), IV89–IV93 (1985).
pubmed: 2414032
Harris, R. K. & Mann, B. E. NMR and The Periodic Table 459 (Academic Press, Cambridge, 1978).
Smith, G. A. et al. Intracellular calcium measurement by
pubmed: 6417665
pmcid: 390017
doi: 10.1073/pnas.80.23.7178
Gilboa, H., Chapman, B. E. & Kuchel, P. W.
pubmed: 7718434
doi: 10.1002/nbm.1940070707
Murphy, E. et al. Nuclear magnetic resonance measurement of cytosolic free calcium levels in human red blood cells. Am. J. Physiol. 251(4), C496–C504 (1986).
pubmed: 3094375
doi: 10.1152/ajpcell.1986.251.4.C496
Schanne, F. A. X. et al. Lead increases free Ca
pubmed: 2500664
pmcid: 297571
doi: 10.1073/pnas.86.13.5133
Kuchel, P. W. et al. Apparatus for rapid adjustment of the degree of alignment of NMR samples in aqueous media: verification with residual quadrupolar splittings in
pubmed: 16556508
doi: 10.1016/j.jmr.2006.03.002
Larsen, F. L. et al. Physiological shear stresses enhance the Ca
pubmed: 6458770
doi: 10.1038/294667a0
Brooks, D. E. et al. Physiological shear stresses enhance the Ca
Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically-activated cation channels. Science 330(6000), 55–60 (2010).
pubmed: 20813920
pmcid: 3062430
doi: 10.1126/science.1193270
Sukharev, S. & Sachs, F. Molecular force transduction by ion channels-diversity and unifying principles. J. Cell Sci. 125(13), 3075–3083 (2012).
pubmed: 22797911
pmcid: 3434843
Ranade, S. S., Syeda, R. & Patapoutian, A. Mechanically activated ion channels. Neuron 87(6), 1162–1179 (2015).
pubmed: 26402601
pmcid: 4582600
doi: 10.1016/j.neuron.2015.08.032
Cahalan, S. M. et al. Piezo1 links mechanical forces to red blood cell volume. Life 4, e07370 (2015).
Zarychanski, R. et al. Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood 120(9), 1908–1915 (2012).
pubmed: 22529292
pmcid: 3448561
doi: 10.1182/blood-2012-04-422253
Bae, C. et al. Xerocytosis is caused by mutations that alter the kinetics of the mechanosensitive channel PIEZO1. Proc. Natl. Acad. Sci. USA 110(12), E1162–E1168 (2013).
pubmed: 23487776
pmcid: 3606986
doi: 10.1073/pnas.1219777110
Evans, E. L. et al. RBCs prevent rapid PIEZO1 inactivation and expose slow deactivation as a mechanism of dehydrated hereditary stomatocytosis. Blood 136(1), 140–144 (2020).
pubmed: 32305040
pmcid: 7381761
doi: 10.1182/blood.2019004174
Gnanasambandam, R. et al. Ionic selectivity and permeation properties of human PIEZO1 channels. PLoS ONE May 8, 1–16 (2015).
Bogdanova, A. et al. Calcium in red blood cells: a perilous balance. Int. J. Mol. Sci. 14, 9848–9872 (2013).
pubmed: 23698771
pmcid: 3676817
doi: 10.3390/ijms14059848
Lew, V. L. & Tiffert, T. On the mechanism of human red blood cell longevity: roles of calcium, the sodium pump, PIEZO1, and Gárdos channels. Front. Physiol. 8, 977 (2017).
pubmed: 29311949
pmcid: 5732905
doi: 10.3389/fphys.2017.00977
Tiffert, T. & Lew, V. L. Kinetics of inhibition of the plasma membrane calcium pump by vanadate in intact human red cells. Cell Calcium 30(5), 337–342 (2001).
pubmed: 11733940
doi: 10.1054/ceca.2001.0241
Tiffert, T., Spivak, J. L. & Lew, V. L. Magnitude of calcium influx required to induce dehydration of normal human red-cells. Biochem. Biophys. Acta 943(2), 157–165 (1988).
pubmed: 2456784
doi: 10.1016/0005-2736(88)90547-0
Beutler, E. Red Cell Metabolism: A Manual of Biochemical Methods (Grune & Stratton, Orlando, 1984).
Metcalfe, J. C., Hesketh, T. R. & Smith, G. A. Free cytosolic Ca
pubmed: 3874697
doi: 10.1016/0143-4160(85)90043-0
Bar-Shir, A. et al. Single
pubmed: 25523816
doi: 10.1021/ja511313k
Shishmarev, D. et al. Sub-minute kinetics of human red cell fumarase:
doi: 10.1002/nbm.3870
Shishmarev, D. et al. Anomerisation of fluorinated sugars by mutarotase studied using
doi: 10.1071/CH19562
Feig, S. A., Shohet, S. B. & Nathan, D. G. Energy metabolism in human erythrocytes. 1. Effects of sodium fluoride. J. Clin. Investig. 50(8), 1731 (1971).
pubmed: 4329003
pmcid: 442073
doi: 10.1172/JCI106662
Chapman, B. E. & Kuchel, P. W. Fluoride transmembrane exchange in human erythrocytes measured with
pubmed: 2269212
doi: 10.1007/BF00223572
Mulquiney, P. J., Bubb, W. A. & Kuchel, P. W. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: in vivo kinetic characterization of 2,3-bisphosphoglycerate synthase/phosphatase using
pubmed: 10477268
pmcid: 1220498
doi: 10.1042/bj3420567
Mulquiney, P. J. & Kuchel, P. W. Modelling Metabolism with Mathematica (CRC Press, Boca Raton, 2003).
doi: 10.1201/9780203503935
Kamp, D., Sieberg, T. & Haest, C. W. M. Inhibition and stimulation of phospholipid scrambling activity. Consequences for lipid asymmetry, echinocytosis, and microvesiculation of erythrocytes. Biochemistry 40(31), 9438–9446 (2001).
pubmed: 11478914
doi: 10.1021/bi0107492
Naumann, C. & Kuchel, P. W. NMR (pro)chiral discrimination using polysaccharide gels. Chem. Eur. J. 15(45), 12189–12191 (2009).
pubmed: 19882599
doi: 10.1002/chem.200902165
Naumann, C. & Kuchel, P. W.
pubmed: 21592833
doi: 10.1016/j.jmr.2011.04.005
Naumann, C. & Kuchel, P. W. NMR of Na
doi: 10.1039/c0py00038h
Naumann, C. & Kuchel, P. W. Prochiral and chiral resolution in
pubmed: 18714974
doi: 10.1021/jp802982t
Bavi, O. et al. Influence of global and local membrane curvature on mechanosensitive ion channels: a finite element approach. Membranes 6(1), 14 (2016).
pmcid: 4812420
doi: 10.3390/membranes6010014
Syeda, R. et al. Piezo1 channels are inherently mechanosensitive. Cell Rep. 17(7), 1739–1746 (2016).
pubmed: 27829145
pmcid: 5129625
doi: 10.1016/j.celrep.2016.10.033
Romero, L. O. et al. Dietary fatty acids fine-tune Piezo1 mechanical response. Nat. Commun. 10, 1–14 (2019).
doi: 10.1038/s41467-019-09055-7
Ridone, P., et al. Disruption of membrane cholesterol organization the of PIEZO1 channel clusters. J. Gen. Physiol. 152(8) (2020).
Tsuchiya, M. et al. Cell surface flip-flop of phosphatidylserine is critical for PIEZO1-mediated myotube formation. Nat. Commun. 9, 1–15 (2018).
doi: 10.1038/s41467-018-04436-w
Wolfram, S. The Mathematica Book 5th edn. (Wolfram Media Inc., Champaign, 2003).
Kuchel, P. W. & Fackerell, E. D. Parametric-equation representation of biconcave erythrocytes. Bull. Math. Biol. 61(2), 209–220 (1999).
pubmed: 17883208
doi: 10.1006/bulm.1998.0064
Aiken, N. R., Satterlee, J. D. & Galey, W. R. Measurement of intracellular Ca
pubmed: 1504100
doi: 10.1016/0167-4889(92)90251-6