Enhanced Ca


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
12 02 2021
Historique:
received: 12 11 2020
accepted: 19 01 2021
entrez: 13 2 2021
pubmed: 14 2 2021
medline: 29 12 2021
Statut: epublish

Résumé

We present the first direct nuclear magnetic resonance (NMR) evidence of enhanced entry of Ca

Identifiants

pubmed: 33580124
doi: 10.1038/s41598-021-83044-z
pii: 10.1038/s41598-021-83044-z
pmc: PMC7881017
doi:

Substances chimiques

1,2-bis(2-aminophenoxy)ethane-5,5'-difluoro-N,N,N',N'-tetraacetic acid acetoxymethyl ester 0
Calcium Channels 0
Ion Channels 0
PIEZO1 protein, human 0
Fluorine 284SYP0193
Egtazic Acid 526U7A2651
5,5'-difluoro-1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid 85233-21-2
Glucose IY9XDZ35W2
Calcium SY7Q814VUP

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3749

Références

Kuchel, P. W. & Shishmarev, D. Accelerating metabolism and transmembrane cation flux by distorting red blood cells. Sci. Adv. 3(10), 1016 (2017).
doi: 10.1126/sciadv.aao1016
Shishmarev, D., Momot, K. I. & Kuchel, P. W. Anisotropic diffusion in stretched hydrogels containing erythrocytes: evidence of cell-shape distortion recorded by PGSE NMR spectroscopy. Magn. Reson. Chem. 55(5), 438–446 (2017).
pubmed: 26914993 doi: 10.1002/mrc.4416
Wellard, R. M. et al. Factors affecting
doi: 10.1006/jmrb.1994.1085
Kuchel, P. W. et al. NMR of
pubmed: 26561738 doi: 10.1016/j.jmr.2015.10.011
Kuchel, P. W., Kirk, K. & Shishmarev, D. The NMR ‘split peak effect’ in cell suspensions: historical perspective, explanation and applications. Prog. Nucl. Magn. Reson. Spectrosc. 104, 1–11 (2018).
pubmed: 29405979 doi: 10.1016/j.pnmrs.2017.11.002
Springer, C. S. Jr. et al. Use of shift reagents for nuclear magnetic resonance studies of the kinetics of ion transfer in cells and perfused hearts. Circulation 72(5), IV89–IV93 (1985).
pubmed: 2414032
Harris, R. K. & Mann, B. E. NMR and The Periodic Table 459 (Academic Press, Cambridge, 1978).
Smith, G. A. et al. Intracellular calcium measurement by
pubmed: 6417665 pmcid: 390017 doi: 10.1073/pnas.80.23.7178
Gilboa, H., Chapman, B. E. & Kuchel, P. W.
pubmed: 7718434 doi: 10.1002/nbm.1940070707
Murphy, E. et al. Nuclear magnetic resonance measurement of cytosolic free calcium levels in human red blood cells. Am. J. Physiol. 251(4), C496–C504 (1986).
pubmed: 3094375 doi: 10.1152/ajpcell.1986.251.4.C496
Schanne, F. A. X. et al. Lead increases free Ca
pubmed: 2500664 pmcid: 297571 doi: 10.1073/pnas.86.13.5133
Kuchel, P. W. et al. Apparatus for rapid adjustment of the degree of alignment of NMR samples in aqueous media: verification with residual quadrupolar splittings in
pubmed: 16556508 doi: 10.1016/j.jmr.2006.03.002
Larsen, F. L. et al. Physiological shear stresses enhance the Ca
pubmed: 6458770 doi: 10.1038/294667a0
Brooks, D. E. et al. Physiological shear stresses enhance the Ca
Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically-activated cation channels. Science 330(6000), 55–60 (2010).
pubmed: 20813920 pmcid: 3062430 doi: 10.1126/science.1193270
Sukharev, S. & Sachs, F. Molecular force transduction by ion channels-diversity and unifying principles. J. Cell Sci. 125(13), 3075–3083 (2012).
pubmed: 22797911 pmcid: 3434843
Ranade, S. S., Syeda, R. & Patapoutian, A. Mechanically activated ion channels. Neuron 87(6), 1162–1179 (2015).
pubmed: 26402601 pmcid: 4582600 doi: 10.1016/j.neuron.2015.08.032
Cahalan, S. M. et al. Piezo1 links mechanical forces to red blood cell volume. Life 4, e07370 (2015).
Zarychanski, R. et al. Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood 120(9), 1908–1915 (2012).
pubmed: 22529292 pmcid: 3448561 doi: 10.1182/blood-2012-04-422253
Bae, C. et al. Xerocytosis is caused by mutations that alter the kinetics of the mechanosensitive channel PIEZO1. Proc. Natl. Acad. Sci. USA 110(12), E1162–E1168 (2013).
pubmed: 23487776 pmcid: 3606986 doi: 10.1073/pnas.1219777110
Evans, E. L. et al. RBCs prevent rapid PIEZO1 inactivation and expose slow deactivation as a mechanism of dehydrated hereditary stomatocytosis. Blood 136(1), 140–144 (2020).
pubmed: 32305040 pmcid: 7381761 doi: 10.1182/blood.2019004174
Gnanasambandam, R. et al. Ionic selectivity and permeation properties of human PIEZO1 channels. PLoS ONE May 8, 1–16 (2015).
Bogdanova, A. et al. Calcium in red blood cells: a perilous balance. Int. J. Mol. Sci. 14, 9848–9872 (2013).
pubmed: 23698771 pmcid: 3676817 doi: 10.3390/ijms14059848
Lew, V. L. & Tiffert, T. On the mechanism of human red blood cell longevity: roles of calcium, the sodium pump, PIEZO1, and Gárdos channels. Front. Physiol. 8, 977 (2017).
pubmed: 29311949 pmcid: 5732905 doi: 10.3389/fphys.2017.00977
Tiffert, T. & Lew, V. L. Kinetics of inhibition of the plasma membrane calcium pump by vanadate in intact human red cells. Cell Calcium 30(5), 337–342 (2001).
pubmed: 11733940 doi: 10.1054/ceca.2001.0241
Tiffert, T., Spivak, J. L. & Lew, V. L. Magnitude of calcium influx required to induce dehydration of normal human red-cells. Biochem. Biophys. Acta 943(2), 157–165 (1988).
pubmed: 2456784 doi: 10.1016/0005-2736(88)90547-0
Beutler, E. Red Cell Metabolism: A Manual of Biochemical Methods (Grune & Stratton, Orlando, 1984).
Metcalfe, J. C., Hesketh, T. R. & Smith, G. A. Free cytosolic Ca
pubmed: 3874697 doi: 10.1016/0143-4160(85)90043-0
Bar-Shir, A. et al. Single
pubmed: 25523816 doi: 10.1021/ja511313k
Shishmarev, D. et al. Sub-minute kinetics of human red cell fumarase:
doi: 10.1002/nbm.3870
Shishmarev, D. et al. Anomerisation of fluorinated sugars by mutarotase studied using
doi: 10.1071/CH19562
Feig, S. A., Shohet, S. B. & Nathan, D. G. Energy metabolism in human erythrocytes. 1. Effects of sodium fluoride. J. Clin. Investig. 50(8), 1731 (1971).
pubmed: 4329003 pmcid: 442073 doi: 10.1172/JCI106662
Chapman, B. E. & Kuchel, P. W. Fluoride transmembrane exchange in human erythrocytes measured with
pubmed: 2269212 doi: 10.1007/BF00223572
Mulquiney, P. J., Bubb, W. A. & Kuchel, P. W. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: in vivo kinetic characterization of 2,3-bisphosphoglycerate synthase/phosphatase using
pubmed: 10477268 pmcid: 1220498 doi: 10.1042/bj3420567
Mulquiney, P. J. & Kuchel, P. W. Modelling Metabolism with Mathematica (CRC Press, Boca Raton, 2003).
doi: 10.1201/9780203503935
Kamp, D., Sieberg, T. & Haest, C. W. M. Inhibition and stimulation of phospholipid scrambling activity. Consequences for lipid asymmetry, echinocytosis, and microvesiculation of erythrocytes. Biochemistry 40(31), 9438–9446 (2001).
pubmed: 11478914 doi: 10.1021/bi0107492
Naumann, C. & Kuchel, P. W. NMR (pro)chiral discrimination using polysaccharide gels. Chem. Eur. J. 15(45), 12189–12191 (2009).
pubmed: 19882599 doi: 10.1002/chem.200902165
Naumann, C. & Kuchel, P. W.
pubmed: 21592833 doi: 10.1016/j.jmr.2011.04.005
Naumann, C. & Kuchel, P. W. NMR of Na
doi: 10.1039/c0py00038h
Naumann, C. & Kuchel, P. W. Prochiral and chiral resolution in
pubmed: 18714974 doi: 10.1021/jp802982t
Bavi, O. et al. Influence of global and local membrane curvature on mechanosensitive ion channels: a finite element approach. Membranes 6(1), 14 (2016).
pmcid: 4812420 doi: 10.3390/membranes6010014
Syeda, R. et al. Piezo1 channels are inherently mechanosensitive. Cell Rep. 17(7), 1739–1746 (2016).
pubmed: 27829145 pmcid: 5129625 doi: 10.1016/j.celrep.2016.10.033
Romero, L. O. et al. Dietary fatty acids fine-tune Piezo1 mechanical response. Nat. Commun. 10, 1–14 (2019).
doi: 10.1038/s41467-019-09055-7
Ridone, P., et al. Disruption of membrane cholesterol organization the of PIEZO1 channel clusters. J. Gen. Physiol. 152(8) (2020).
Tsuchiya, M. et al. Cell surface flip-flop of phosphatidylserine is critical for PIEZO1-mediated myotube formation. Nat. Commun. 9, 1–15 (2018).
doi: 10.1038/s41467-018-04436-w
Wolfram, S. The Mathematica Book 5th edn. (Wolfram Media Inc., Champaign, 2003).
Kuchel, P. W. & Fackerell, E. D. Parametric-equation representation of biconcave erythrocytes. Bull. Math. Biol. 61(2), 209–220 (1999).
pubmed: 17883208 doi: 10.1006/bulm.1998.0064
Aiken, N. R., Satterlee, J. D. & Galey, W. R. Measurement of intracellular Ca
pubmed: 1504100 doi: 10.1016/0167-4889(92)90251-6

Auteurs

Philip W Kuchel (PW)

School of Life and Environmental Sciences, University of Sydney, Building G08, Sydney, NSW, 2006, Australia. philip.kuchel@sydney.edu.au.

Konstantin Romanenko (K)

School of Life and Environmental Sciences, University of Sydney, Building G08, Sydney, NSW, 2006, Australia.

Dmitry Shishmarev (D)

John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.

Petrik Galvosas (P)

MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University Wellington, Wellington, New Zealand.

Charles D Cox (CD)

Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW, Australia.
St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH