Hippocampal neurons respond to brain activity with functional hypoxia.


Journal

Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835

Informations de publication

Date de publication:
06 2021
Historique:
received: 02 06 2020
accepted: 04 12 2020
revised: 24 11 2020
pubmed: 11 2 2021
medline: 12 10 2021
entrez: 10 2 2021
Statut: ppublish

Résumé

Physical activity and cognitive challenge are established non-invasive methods to induce comprehensive brain activation and thereby improve global brain function including mood and emotional well-being in healthy subjects and in patients. However, the mechanisms underlying this experimental and clinical observation and broadly exploited therapeutic tool are still widely obscure. Here we show in the behaving brain that physiological (endogenous) hypoxia is likely a respective lead mechanism, regulating hippocampal plasticity via adaptive gene expression. A refined transgenic approach in mice, utilizing the oxygen-dependent degradation (ODD) domain of HIF-1α fused to CreERT2 recombinase, allows us to demonstrate hypoxic cells in the performing brain under normoxia and motor-cognitive challenge, and spatially map them by light-sheet microscopy, all in comparison to inspiratory hypoxia as strong positive control. We report that a complex motor-cognitive challenge causes hypoxia across essentially all brain areas, with hypoxic neurons particularly abundant in the hippocampus. These data suggest an intriguing model of neuroplasticity, in which a specific task-associated neuronal activity triggers mild hypoxia as a local neuron-specific as well as a brain-wide response, comprising indirectly activated neurons and non-neuronal cells.

Identifiants

pubmed: 33564132
doi: 10.1038/s41380-020-00988-w
pii: 10.1038/s41380-020-00988-w
pmc: PMC8440186
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1790-1807

Informations de copyright

© 2021. The Author(s).

Références

Kaelin WG, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30:393–402.
pubmed: 18498744 doi: 10.1016/j.molcel.2008.04.009
Ratcliffe PJ. Oxygen sensing and hypoxia signalling pathways in animals: the implications of physiology for cancer. J Physiol. 2013;591:2027–42.
pubmed: 23401619 pmcid: 3634517 doi: 10.1113/jphysiol.2013.251470
Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.
pubmed: 13130303 doi: 10.1038/nrc1187
Kullmann JA, Trivedi N, Howell D, Laumonnerie C, Nguyen V, Banerjee SS, et al. Oxygen tension and the VHL-Hif1alpha pathway determine onset of neuronal polarization and cerebellar germinal zone exit. Neuron. 2020;106:607–623 e605.
pubmed: 32183943 pmcid: 7244394 doi: 10.1016/j.neuron.2020.02.025
Ivashkiv LB. The hypoxia–lactate axis tempers inflammation. Nat Rev Immunol. 2020;20:85–86.
pubmed: 31819164 pmcid: 7021227 doi: 10.1038/s41577-019-0259-8
Huang X, Trinh T, Aljoufi A, Broxmeyer HE. Hypoxia signaling pathway in stem cell regulation: good and evil. Curr Stem Cell Rep. 2018;4:149–57.
pubmed: 31275803 pmcid: 6605067 doi: 10.1007/s40778-018-0127-7
Morikawa T, Takubo K. Hypoxia regulates the hematopoietic stem cell niche. Pflug Arch. 2016;468:13–22.
doi: 10.1007/s00424-015-1743-z
Taylor CT, Colgan SP. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat Rev Immunol. 2017;17:774–85.
pubmed: 28972206 pmcid: 5799081 doi: 10.1038/nri.2017.103
Baik AH, Jain IH. Turning the oxygen dial: balancing the highs and lows. Trends Cell Biol. 2020;30:516–36.
pubmed: 32386878 pmcid: 7391449 doi: 10.1016/j.tcb.2020.04.005
Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020;21:268–83.
pubmed: 32144406 pmcid: 7222024 doi: 10.1038/s41580-020-0227-y
Yuen TJ, Silbereis JC, Griveau A, Chang SM, Daneman R, Fancy SP, et al. Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell. 2014;158:383–96.
pubmed: 25018103 pmcid: 4149873 doi: 10.1016/j.cell.2014.04.052
Jain IH, Calvo SE, Markhard AL, Skinner OS, To TL, Ast T, et al. Genetic screen for cell fitness in high or low oxygen highlights mitochondrial and lipid metabolism. Cell. 2020;181:716–727 e711.
pubmed: 32259488 pmcid: 7293541 doi: 10.1016/j.cell.2020.03.029
Kaelin WG. Proline hydroxylation and gene expression. Annu Rev Biochem. 2005;74:115–28.
pubmed: 15952883 doi: 10.1146/annurev.biochem.74.082803.133142
Kenneth NS, Rocha S. Regulation of gene expression by hypoxia. Biochemical J. 2008;414:19–29.
doi: 10.1042/BJ20081055
Marti HH. Erythropoietin and the hypoxic brain. J Exp Biol. 2004;207:3233–42.
pubmed: 15299044 doi: 10.1242/jeb.01049
Adamcio B, Sperling S, Hagemeyer N, Walkinshaw G, Ehrenreich H. Hypoxia inducible factor stabilization leads to lasting improvement of hippocampal memory in healthy mice. Behavioural Brain Res. 2010;208:80–84.
doi: 10.1016/j.bbr.2009.11.010
Brines M, Cerami A. Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci. 2005;6:484–94.
pubmed: 15928718 doi: 10.1038/nrn1687
Suresh S, Rajvanshi PK, Noguchi CT. The many facets of erythropoietin physiologic and metabolic response. Front Physiol. 2020;10:1534.
pubmed: 32038269 pmcid: 6984352 doi: 10.3389/fphys.2019.01534
Schuler B, Vogel J, Grenacher B, Jacobs RA, Arras M, Gassmann M. Acute and chronic elevation of erythropoietin in the brain improves exercise performance in mice without inducing erythropoiesis. FASEB J. 2012;26:3884–90.
pubmed: 22683849 doi: 10.1096/fj.11-191197
Jelkmann W. Erythropoietin: structure, control of production, and function. Physiological Rev. 1992;72:449–89.
doi: 10.1152/physrev.1992.72.2.449
Logothetis NK, Pfeuffer J. On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging. 2004;22:1517–31.
pubmed: 15707801 doi: 10.1016/j.mri.2004.10.018
Hillman EMC. Coupling mechanism and significance of the BOLD signal: a status report. Annu Rev Neurosci. 2014;37:161–81.
pubmed: 25032494 pmcid: 4147398 doi: 10.1146/annurev-neuro-071013-014111
Raichle ME. Behind the scenes of functional brain imaging: a historical and physiological perspective. Proc Natl Acad Sci USA. 1998;95:765–72.
pubmed: 9448239 pmcid: 33796 doi: 10.1073/pnas.95.3.765
Erickson KI, Hillman CH, Kramer AF. Physical activity, brain, and cognition. Curr Opin Behav Sci. 2015;4:27–32.
doi: 10.1016/j.cobeha.2015.01.005
Kramer AF, Erickson KI. Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function. Trends Cogn Sci. 2007;11:342–8.
pubmed: 17629545 doi: 10.1016/j.tics.2007.06.009
Pajonk FG, Wobrock T, Gruber O, Scherk H, Berner D, Kaizl I, et al. Hippocampal plasticity in response to exercise in schizophrenia. Arch Gen Psychiatry. 2010;67:133–43.
pubmed: 20124113 doi: 10.1001/archgenpsychiatry.2009.193
Ehrenreich H, Fischer B, Norra C, Schellenberger F, Stender N, Stiefel M, et al. Exploring recombinant human erythropoietin in chronic progressive multiple sclerosis. Brain. 2007;130:2577–88.
pubmed: 17728357 doi: 10.1093/brain/awm203
Ehrenreich H, Hinze-Selch D, Stawicki S, Aust C, Knolle-Veentjer S, Wilms S, et al. Improvement of cognitive functions in chronic schizophrenic patients by recombinant human erythropoietin. Mol Psychiatry. 2007;12:206–20.
pubmed: 17033631 doi: 10.1038/sj.mp.4001907
Miskowiak KW, Vinberg M, Christensen EM, Bukh JD, Harmer CJ, Ehrenreich H, et al. Recombinant human erythropoietin for treating treatment-resistant depression: a double-blind, randomized, placebo-controlled phase 2 trial. Neuropsychopharmacology. 2014;39:1399–408.
pubmed: 24322509 pmcid: 3988543 doi: 10.1038/npp.2013.335
Miskowiak KW, Vinberg M, Macoveanu J, Ehrenreich H, Koster N, Inkster B, et al. Effects of erythropoietin on hippocampal volume and memory in mood disorders. Biol Psychiatry. 2015;78:270–7.
pubmed: 25641635 doi: 10.1016/j.biopsych.2014.12.013
Hassouna I, Ott C, Wüstefeld L, Offen N, Neher RA, Mitkovski M, et al. Revisiting adult neurogenesis and the role of erythropoietin for neuronal and oligodendroglial differentiation in the hippocampus. Mol Psychiatry. 2016;21:1752–67.
pubmed: 26809838 pmcid: 5193535 doi: 10.1038/mp.2015.212
Wakhloo D, Scharkowski F, Curto Y, Butt UJ, Bansal V, Steixner-Kumar AA, et al. Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin. Nat Commun. 2020;11:1–12.
doi: 10.1038/s41467-020-15041-1
Kimura W, Xiao F, Canseco DC, Muralidhar S, Thet S, Zhang HM, et al. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature. 2015;523:226–30.
pubmed: 26098368 doi: 10.1038/nature14582
Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13:133.
pubmed: 20023653 doi: 10.1038/nn.2467
Liebetanz D, Merkler D. Effects of commissural de- and remyelination on motor skill behaviour in the cuprizone mouse model of multiple sclerosis. Exp Neurol. 2006;202:217–24.
pubmed: 16857191 doi: 10.1016/j.expneurol.2006.05.032
McKenzie IA, Ohayon D, Li H, Paes de Faria J, Emery B, Tohyama K, et al. Motor skill learning requires active central myelination. Science. 2014;346:318–22.
pubmed: 25324381 pmcid: 6324726 doi: 10.1126/science.1254960
Liebmann T, Renier N, Bettayeb K, Greengard P, Tessier-Lavigne M, Flajolet M. Three-dimensional study of Alzheimer’s disease hallmarks using the iDISCO clearing method. Cell Rep. 2016;16:1138–52.
pubmed: 27425620 pmcid: 5040352 doi: 10.1016/j.celrep.2016.06.060
Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2006;445:168–76.
pubmed: 17151600 doi: 10.1038/nature05453
Team RC. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018.
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20.
pubmed: 29608179 pmcid: 6700744 doi: 10.1038/nbt.4096
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM III, et al. Comprehensive Integration of single-cell data. Cell. 2019;177:1888–1902.e1821.
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 2019;8:329–337 e324.
pubmed: 30954475 pmcid: 6853612 doi: 10.1016/j.cels.2019.03.003
Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015;347:1138.
pubmed: 25700174 doi: 10.1126/science.aaa1934
Dere E, Dahm L, Lu D, Hammerschmidt K, Ju A, Tantra M, et al. Heterozygous AMBRA1 deficiency in mice: a genetic trait with autism-like behavior restricted to the female gender. Front Behav Neurosci. 2014;8:181.
Ribbe K, Friedrichs H, Begemann M, Grube S, Papiol S, Kästner A, et al. The cross-sectional GRAS sample: A comprehensive phenotypical data collection of schizophrenic patients. BMC Psychiatry. 2010;10:91.
pubmed: 21067598 pmcid: 3002316 doi: 10.1186/1471-244X-10-91
Penny JE, Kukums JR, Tyrer JH, Eadie MJ. Selective vulnerability of the hippocampus to hypoxia: cytophotometric studies of enzyme activity in single neurones. Proc Aust Assoc Neurol. 1974;11:177–81.
pubmed: 4469629
Ng T, Graham DI, Adams JH, Ford I. Changes in the hippocampus and the cerebellum resulting from hypoxic insults: frequency and distribution. Acta Neuropathol. 1989;78:438–43.
pubmed: 2782053 doi: 10.1007/BF00688181
Schmidt-Kastner R. Genomic approach to selective vulnerability of the hippocampus in brain ischemia–hypoxia. Neuroscience. 2015;309:259–79.
pubmed: 26383255 doi: 10.1016/j.neuroscience.2015.08.034
Sommer W. Erkrankung des Ammonshorns als aetiologisches Moment der Epilepsie. Arch Psychiatr Nervenkr. 1880;10:631–75.
doi: 10.1007/BF02224538
Chatzi C, Schnell E, Westbrook GL. Localized hypoxia within the subgranular zone determines the early survival of newborn hippocampal granule cells. Elife. 2015;4:e08722.
pubmed: 26476335 pmcid: 4714973 doi: 10.7554/eLife.08722
Mazumdar J, O’brien WT, Johnson RS, LaManna JC, Chavez JC, Klein PS, et al. O2 regulates stem cells through Wnt/β-catenin signalling. Nat Cell Biol. 2010;12:1007–13.
pubmed: 20852629 pmcid: 3144143 doi: 10.1038/ncb2102
Power RM, Huisken J. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat Methods. 2017;14:360–73.
pubmed: 28362435 doi: 10.1038/nmeth.4224
Mathupala SP, Rempel A, Pedersen PL. Glucose catabolism in cancer cells: Identification and characterization of a marked activation response of the type ii hexokinase gene to hypoxic conditions. J Biol Chem. 2001;276:43407–12.
pubmed: 11557773 doi: 10.1074/jbc.M108181200
Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med. 2011;208:313–26.
pubmed: 21242296 pmcid: 3039857 doi: 10.1084/jem.20101470
Brandenburg S, Müller A, Turkowski K, Radev YT, Rot S, Schmidt C, et al. Resident microglia rather than peripheral macrophages promote vascularization in brain tumors and are source of alternative pro-angiogenic factors. Acta Neuropathol. 2016;131:365–78.
pubmed: 26718201 doi: 10.1007/s00401-015-1529-6
Pan Y, Mansfield KD, Bertozzi CC, Rudenko V, Chan DA, Giaccia AJ, et al. Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol Cell Biol. 2007;27:912–25.
pubmed: 17101781 doi: 10.1128/MCB.01223-06
Guo Y, Wang Z, Prathap S, Holschneider DP. Recruitment of prefrontal-striatal circuit in response to skilled motor challenge. Neuroreport. 2017;28:1187–94.
pubmed: 28901999 pmcid: 5685897 doi: 10.1097/WNR.0000000000000881
Fabel K, Wolf SA, Ehninger D, Babu H, Leal-Galicia P, Kempermann G. Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front Neurosci. 2009;3:50.
pubmed: 20582277 pmcid: 2858601
Kobilo T, Liu QR, Gandhi K, Mughal M, Shaham Y, van Praag H. Running is the neurogenic and neurotrophic stimulus in environmental enrichment. Learn Mem. 2011;18:605–9.
pubmed: 21878528 pmcid: 3166785 doi: 10.1101/lm.2283011
Cuffe JS, Walton SL, Singh RR, Spiers JG, Bielefeldt-Ohmann H, Wilkinson L, et al. Mid- to late term hypoxia in the mouse alters placental morphology, glucocorticoid regulatory pathways and nutrient transporters in a sex-specific manner. J Physiol. 2014;592:3127–41.
pubmed: 24801305 pmcid: 4214664 doi: 10.1113/jphysiol.2014.272856
Lan WC, Priestley M, Mayoral SR, Tian L, Shamloo M, Penn AA. Sex-specific cognitive deficits and regional brain volume loss in mice exposed to chronic, sublethal hypoxia. Pediatr Res. 2011;70:15–20.
pubmed: 21436761 pmcid: 3547599 doi: 10.1203/PDR.0b013e31821b98a3
Soliz J, Thomsen JJ, Soulage C, Lundby C, Gassmann M. Sex-dependent regulation of hypoxic ventilation in mice and humans is mediated by erythropoietin. Am J Physiol Regul Integr Comp Physiol. 2009;296:R1837–46.
pubmed: 19321698 doi: 10.1152/ajpregu.90967.2008
Heyer A, Hasselblatt M, von Ahsen N, Häfner H, Sirén A-L, Ehrenreich H. In vitro gender differences in neuronal survival on hypoxia and in 17β-estradiol-mediated neuroprotection. J Cereb Blood Flow Metab. 2005;25:427–30.
pubmed: 15689954 doi: 10.1038/sj.jcbfm.9600056
Halliday MR, Abeydeera D, Lundquist AJ, Petzinger GM, Jakowec MW. Intensive treadmill exercise increases expression of hypoxia-inducible factor 1alpha and its downstream transcript targets: a potential role in neuroplasticity. Neuroreport. 2019;30:619–27.
pubmed: 31045849 doi: 10.1097/WNR.0000000000001239
Jögi A, Vallon-Christersson J, Holmquist L, Axelson H, Borg Å, Påhlman S. Human neuroblastoma cells exposed to hypoxia: induction of genes associated with growth, survival, and aggressive behavior. Exp Cell Res. 2004;295:469–87.
pubmed: 15093745 doi: 10.1016/j.yexcr.2004.01.013
Steinmetz NA, Zatka-Haas P, Carandini M, Harris KD. Distributed coding of choice, action and engagement across the mouse brain. Nature. 2019;576:266–73.
pubmed: 31776518 pmcid: 6913580 doi: 10.1038/s41586-019-1787-x
Marques JC, Li M, Schaak D, Robson DN, Li JM. Internal state dynamics shape brainwide activity and foraging behaviour. Nature. 2020;577:239–43.
pubmed: 31853063 doi: 10.1038/s41586-019-1858-z
Rhodes JS, Garland T Jr, Gammie SC. Patterns of brain activity associated with variation in voluntary wheel-running behavior. Behav Neurosci. 2003;117:1243.
pubmed: 14674844 doi: 10.1037/0735-7044.117.6.1243
Denk F, Ramer LM, Erskine EL, Nassar MA, Bogdanov Y, Signore M, et al. Tamoxifen induces cellular stress in the nervous system by inhibiting cholesterol synthesis. Acta Neuropathol Commun. 2015;3:74.
pubmed: 26610346 pmcid: 4660723 doi: 10.1186/s40478-015-0255-6
Joshi S, Singh AR, Durden DL. MDM2 regulates hypoxic hypoxia-inducible factor 1alpha stability in an E3 ligase, proteasome, and PTEN-phosphatidylinositol 3-kinase-AKT-dependent manner. J Biol Chem. 2014;289:22785–97.
pubmed: 24982421 pmcid: 4132784 doi: 10.1074/jbc.M114.587493

Auteurs

Umer Javed Butt (UJ)

Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Agnes A Steixner-Kumar (AA)

Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Constanze Depp (C)

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Ting Sun (T)

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany.

Imam Hassouna (I)

Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Liane Wüstefeld (L)

Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Sahab Arinrad (S)

Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Matthias R Zillmann (MR)

Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Nadine Schopf (N)

Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Laura Fernandez Garcia-Agudo (L)

Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Leonie Mohrmann (L)

Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Ulli Bode (U)

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Anja Ronnenberg (A)

Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Martin Hindermann (M)

Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Sandra Goebbels (S)

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Stefan Bonn (S)

Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany.

Dörthe M Katschinski (DM)

Institute for Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany.

Kamilla W Miskowiak (KW)

Psychiatric Centre Copenhagen, University Hospital, Rigshospitalet, Copenhagen, Denmark.

Klaus-Armin Nave (KA)

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany. nave@em.mpg.de.

Hannelore Ehrenreich (H)

Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany. ehrenreich@em.mpg.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH