Mapping the immune environment in clear cell renal carcinoma by single-cell genomics.
Aged
CD8-Positive T-Lymphocytes
/ immunology
Carcinoma, Renal Cell
/ genetics
Case-Control Studies
Gene Expression Regulation, Neoplastic
/ immunology
Genomics
/ methods
Humans
Kidney Neoplasms
/ genetics
Lymphocytes, Tumor-Infiltrating
/ immunology
Male
Single-Cell Analysis
/ methods
Transcriptome
Tumor Microenvironment
/ genetics
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
27 01 2021
27 01 2021
Historique:
received:
04
12
2019
accepted:
17
12
2020
entrez:
28
1
2021
pubmed:
29
1
2021
medline:
20
8
2021
Statut:
epublish
Résumé
Clear cell renal cell carcinoma (ccRCC) is one of the most immunologically distinct tumor types due to high response rate to immunotherapies, despite low tumor mutational burden. To characterize the tumor immune microenvironment of ccRCC, we applied single-cell-RNA sequencing (SCRS) along with T-cell-receptor (TCR) sequencing to map the transcriptomic heterogeneity of 25,688 individual CD45
Identifiants
pubmed: 33504936
doi: 10.1038/s42003-020-01625-6
pii: 10.1038/s42003-020-01625-6
pmc: PMC7840906
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
122Subventions
Organisme : NIEHS NIH HHS
ID : P30 ES005605
Pays : United States
Organisme : NCI NIH HHS
ID : K08 CA226391
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA086862
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA260239
Pays : United States
Organisme : NCI NIH HHS
ID : F30 CA206255
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA200673
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM007337
Pays : United States
Organisme : NIH HHS
ID : S10 OD016199
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA203834
Pays : United States
Références
Saad, A. M. et al. Trends in renal-cell carcinoma incidence and mortality in the United States in the last 2 decades: a SEER-Based Study. Clin. Genitourin. Cancer 17, 46–75 (2019).
pubmed: 30391138
doi: 10.1016/j.clgc.2018.10.002
Koneru, R. & Hotte, S. J. Role of cytokine therapy for renal cell carcinoma in the era of targeted agents. Curr. Oncol. 16, S40 (2009).
pubmed: 19478896
pmcid: 2687800
doi: 10.3747/co.v16i0.417
Motzer, R. J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1103–1115 (2019).
pubmed: 30779531
pmcid: 6716603
doi: 10.1056/NEJMoa1816047
Dudani, S. et al. First-line (1L) immuno-oncology (IO) combination therapies in metastatic renal cell carcinoma (mRCC): preliminary results from the International Metastatic Renal Cell Carcinoma Database Consortium (IMDC). J. Clin. Oncol. 37, 584–584 (2019).
doi: 10.1200/JCO.2019.37.7_suppl.584
Sharma, P. & Allison, J. P. Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell 161, 205–214 (2015).
pubmed: 25860605
pmcid: 5905674
doi: 10.1016/j.cell.2015.03.030
Giraldo, N. A. et al. Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer. Clin. Cancer Res. 21, 3031–3040 (2015).
pubmed: 25688160
doi: 10.1158/1078-0432.CCR-14-2926
Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).
pubmed: 25428505
pmcid: 4246418
doi: 10.1038/nature13954
Galon, J. et al. Immunoscore and Immunoprofiling in cancer: an update from the melanoma and immunotherapy bridge 2015. J. Transl. Med. 4, 273 (2016).
doi: 10.1186/s12967-016-1029-z
Ziai, J. et al. CD8+ T cell infiltration in breast and colon cancer: a histologic and statistical analysis. PLoS ONE 13, e0190158 (2018).
pubmed: 29320521
pmcid: 5761898
doi: 10.1371/journal.pone.0190158
Shimizu, S. et al. Tumor-infiltrating CD8+ T-cell density is an independent prognostic marker for oral squamous cell carcinoma. Cancer Med. 8, 80–93 (2019).
pubmed: 30600646
pmcid: 6346233
doi: 10.1002/cam4.1889
Borcherding, N. et al. Keeping tumors in check: a mechanistic review of clinical response and resistance to immune checkpoint blockade in cancer. J. Mol. Biol. 430, 2014–2029 (2018).
pubmed: 29800567
pmcid: 6071324
doi: 10.1016/j.jmb.2018.05.030
Patel, H. D. et al. The future of perioperative therapy in advanced renal cell carcinoma: how can we PROSPER?. Future Oncol. 15, 1683–1695 (2019).
pubmed: 30968729
pmcid: 6595543
doi: 10.2217/fon-2018-0951
Nakano, O. et al. Proliferative activity of intratumoral CD8+ T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res. 61, 5132–5136 (2001).
pubmed: 11431351
Baine, M. K. et al. Characterization of tumor infiltrating lymphocytes in paired primary and metastatic renal cell carcinoma specimens. Oncotarget 6, 24990 (2015).
pubmed: 26317902
pmcid: 4694809
doi: 10.18632/oncotarget.4572
Braun, D. A. et al. Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nat. Med. 26, 909–918 (2020).
pubmed: 32472114
doi: 10.1038/s41591-020-0839-y
pmcid: 7499153
Choueiri, T. K. et al. Biomarker analyses from JAVELIN Renal 101: avelumab + axitinib (A+Ax) versus sunitinib (S) in advanced renal cell carcinoma (aRCC). J. Clin. Oncol. 37, 101 (2019).
doi: 10.1200/JCO.2019.37.15_suppl.101
Choueiri, T. K. et al. Preliminary results for avelumab plus axitinib as first-line therapy in patients with advanced clear-cell renal-cell carcinoma (JAVELIN Renal 100): an open-label, dose-finding and dose-expansion, phase 1b trial. Lancet Oncol. 19, 451–460 (2018).
pubmed: 29530667
doi: 10.1016/S1470-2045(18)30107-4
Chevrier, S. et al. An immune atlas of clear cell renal cell carcinoma. Cell 169, 736–749 (2017).
pubmed: 28475899
pmcid: 5422211
doi: 10.1016/j.cell.2017.04.016
Creighton, C. J. et al. Comprehensivemolecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).
doi: 10.1038/nature12222
Van Den Heuvel, C. N. A. M. et al. Molecular profiling of druggable targets in clear cell renal cell carcinoma through targeted RNA sequencing. Front. Oncol. 9, 117 (2019).
pubmed: 30881919
pmcid: 6407434
doi: 10.3389/fonc.2019.00117
Savas, P. et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat. Med. 24, 986–993 (2018).
pubmed: 29942092
doi: 10.1038/s41591-018-0078-7
Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018).
pubmed: 30388456
pmcid: 6641984
doi: 10.1016/j.cell.2018.10.038
Geissler, K. et al. Immune signature of tumor infiltrating immune cells in renal cancer. Oncoimmunology 4, e985082 (2015).
pubmed: 25949868
pmcid: 4368143
doi: 10.4161/2162402X.2014.985082
Chung, W. et al. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat. Commun. 8, 1–12 (2017).
doi: 10.1038/ncomms15081
Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308 (2018).
pubmed: 29961579
pmcid: 6348010
doi: 10.1016/j.cell.2018.05.060
Guo, X. et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat. Med. 24, 978–985 (2018).
pubmed: 29942094
doi: 10.1038/s41591-018-0045-3
Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science, 352, 189–196 (2016).
pubmed: 27124452
pmcid: 4944528
doi: 10.1126/science.aad0501
Beausang, J. F. et al. T cell receptor sequencing of early-stage breast cancer tumors identifies altered clonal structure of the T cell repertoire. Proc. Natl Acad. Sci. U. S. A. 114, e10409–e10417 (2017).
pubmed: 29138313
pmcid: 5715779
doi: 10.1073/pnas.1713863114
Zheng, C. et al. Landscape of Infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342–1356 (2017).
pubmed: 28622514
doi: 10.1016/j.cell.2017.05.035
Young, M. D. et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 361, 594–599 (2018).
pubmed: 30093597
pmcid: 6104812
doi: 10.1126/science.aat1699
Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
doi: 10.1038/nature11247
Borcherding, N. & Bormann, N. L. scRepertoire: an R-based toolkit for single-cell immune receptor analysis. F1000Research 9, 47 (2020).
pubmed: 32789006
pmcid: 7400693
doi: 10.12688/f1000research.22139.1
Lähnemann, D. et al. Eleven grand challenges in single-cell data science. Genome Biol. 21, 1–35 (2020).
doi: 10.1186/s13059-020-1926-6
Wu, T. D. et al. Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 579, 274–278 (2020).
pubmed: 32103181
doi: 10.1038/s41586-020-2056-8
Luecken, M. D. & Theis, F. J. Current best practices in single‐cell RNA‐seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019).
pubmed: 31217225
pmcid: 6582955
doi: 10.15252/msb.20188746
Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genom. 19, 477 (2018).
doi: 10.1186/s12864-018-4772-0
Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).
pubmed: 19847166
pmcid: 2783335
doi: 10.1038/nature08460
Plitas, G. et al. Regulatory T cells exhibit distinct features in human breast cancer. Immunity 45, 1122–1134 (2016).
pubmed: 27851913
pmcid: 5134901
doi: 10.1016/j.immuni.2016.10.032
De Simone, M. et al. Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor-infiltrating T regulatory cells. Immunity 45, 1135–1147 (2016).
pubmed: 27851914
pmcid: 5119953
doi: 10.1016/j.immuni.2016.10.021
Motzer, R. J. et al. Nivolumab plus Ipilimumab versus Sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).
pubmed: 29562145
pmcid: 5972549
doi: 10.1056/NEJMoa1712126
Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).
pubmed: 26406148
pmcid: 5719487
doi: 10.1056/NEJMoa1510665
Vuong, L., Kotecha, R. R., Voss, M. H. & Hakimi, A. A. Tumor microenvironment dynamics in clear-cell renal cell carcinoma. Cancer Discov. 9, 1349–1357 (2019).
pubmed: 31527133
pmcid: 6774890
doi: 10.1158/2159-8290.CD-19-0499
Miao, D. et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359, 801–806 (2018).
pubmed: 29301960
pmcid: 6035749
doi: 10.1126/science.aan5951
Şenbabaoğlu, Y. et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 71, 1–25 (2016).
Chowell, D. et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359, 582–587 (2018).
pubmed: 29217585
doi: 10.1126/science.aao4572
Kim, K. T. et al. Application of single-cell RNA sequencing in optimizing a combinatorial therapeutic strategy in metastatic renal cell carcinoma. Genome Biol. 17, 1–17 (2016).
doi: 10.1186/s13059-016-0945-9
Zhou, W. et al. Comprehensive analysis of copy number variations in kidney cancer by single-cell exome sequencing. Front. Genet. 10, 1379 (2020).
pubmed: 32038722
pmcid: 6989475
doi: 10.3389/fgene.2019.01379
Giraldo, N. A. et al. Tumor-infiltrating and peripheral blood T-cell immunophenotypes predict early relapse in localized clear cell renal cell carcinoma. Clin. Cancer Res. 23, 4416–4428 (2017).
pubmed: 28213366
doi: 10.1158/1078-0432.CCR-16-2848
Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).
pubmed: 31359002
pmcid: 6689255
doi: 10.1038/s41591-019-0522-3
Qi, Y. et al. Tumor-infiltrating CD39
pubmed: 32306075
doi: 10.1007/s00262-020-02563-2
Komohara, Y. et al. Macrophage infiltration and its prognostic relevance in clear cell renal cell carcinoma. Cancer Sci. 102, 1424–1431 (2011).
pubmed: 21453387
doi: 10.1111/j.1349-7006.2011.01945.x
Baldan, V., Griffiths, R., Hawkins, R. E. & Gilham, D. E. Efficient and reproducible generation of tumour-infiltrating lymphocytes for renal cell carcinoma. Br. J. Cancer 112, 1510–1518 (2015).
pubmed: 25867267
pmcid: 4453687
doi: 10.1038/bjc.2015.96
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).
pubmed: 31178118
pmcid: 6687398
doi: 10.1016/j.cell.2019.05.031
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
pubmed: 29608179
pmcid: 6700744
doi: 10.1038/nbt.4096
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 1–15 (2019).
doi: 10.1186/s13059-019-1874-1
Nestorowa, S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128, e20–e31 (2016).
pubmed: 27365425
pmcid: 5305050
doi: 10.1182/blood-2016-05-716480
Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).
pubmed: 30643263
pmcid: 6340744
doi: 10.1038/s41590-018-0276-y
Liu, J. et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173, 400–416 (2018).
pubmed: 29625055
pmcid: 6066282
doi: 10.1016/j.cell.2018.02.052
Borcherding, N. Single-cell genomics in clear cell renal carcinoma (Version 1). Zenodo. https://doi.org/10.5281/zenodo.4311825 (2020).