Inflammation-driven glial alterations in the cuprizone mouse model probed with diffusion-weighted magnetic resonance spectroscopy at 11.7 T.
choline compounds
cuprizone model
diffusion-weighted spectroscopy
glial cells
inflammation, myo-inositol
Journal
NMR in biomedicine
ISSN: 1099-1492
Titre abrégé: NMR Biomed
Pays: England
ID NLM: 8915233
Informations de publication
Date de publication:
04 2021
04 2021
Historique:
received:
13
08
2020
accepted:
02
01
2021
pubmed:
23
1
2021
medline:
15
12
2021
entrez:
22
1
2021
Statut:
ppublish
Résumé
Inflammation of brain tissue is a complex response of the immune system to the presence of toxic compounds or to cell injury, leading to a cascade of pathological processes that include glial cell activation. Noninvasive MRI markers of glial reactivity would be very useful for in vivo detection and monitoring of inflammation processes in the brain, as well as for evaluating the efficacy of personalized treatments. Due to their specific location in glial cells, myo-inositol (mIns) and choline compounds (tCho) seem to be the best candidates for probing glial-specific intra-cellular compartments. However, their concentrations quantified using conventional proton MRS are not specific for inflammation. In contrast, it has been recently suggested that mIns intra-cellular diffusion, measured using diffusion-weighted MRS (DW-MRS) in a mouse model of reactive astrocytes, could be a specific marker of astrocytic hypertrophy. In order to evaluate the specificity of both mIns and tCho diffusion to inflammation-driven glial alterations, we performed DW-MRS in a volume of interest containing the corpus callosum and surrounding tissue of cuprizone-fed mice after 6 weeks of intoxication, and evaluated the extent of astrocytic and microglial alterations using immunohistochemistry. Both mIns and tCho apparent diffusion coefficients were significantly elevated in cuprizone-fed mice compared with control mice, and histologic evaluation confirmed the presence of severe inflammation. Additionally, mIns and tCho diffusion showed, respectively, strong and moderate correlations with histological measures of astrocytic and microglial area fractions, confirming DW-MRS as a promising tool for specific detection of glial changes under pathological conditions.
Substances chimiques
Inositol
4L6452S749
Cuprizone
5N16U7E0AO
Choline
N91BDP6H0X
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e4480Subventions
Organisme : Medical Research Council
ID : MR/T020296/1
Pays : United Kingdom
Informations de copyright
© 2021 John Wiley & Sons, Ltd.
Références
Martino G, Adorini L, Rieckmann P, et al. Inflammation in multiple sclerosis: the good, the bad, and the complex. Lancet Neurol. 2002;1(8):499-509. https://doi.org/10.1016/S1474-4422(02)00223-5
Sochocka M, Diniz BS, Leszek J. Inflammatory response in the CNS: friend or foe? Mol Neurobiol. 2017;54(10):8071-8089. https://doi.org/10.1007/s12035-016-0297-1
González H, Pacheco R. T-cell-mediated regulation of neuroinflammation involved in neurodegenerative diseases. J Neuroinflammation. 2014;11(1):201. https://doi.org/10.1186/s12974-014-0201-8
Khandelwal PJ, Herman AM, Moussa CE-H. Inflammation in the early stages of neurodegenerative pathology. J Neuroimmunol. 2011;238(1-2):1-11. https://doi.org/10.1016/j.jneuroim.2011.07.002
Alexander DC, Dyrby TB, Nilsson M, Zhang H. Imaging brain microstructure with diffusion MRI: practicality and applications. NMR Biomed. 2019;32(4):e3841. https://doi.org/10.1002/nbm.3841
Jelescu IO, Budde MD. Design and validation of diffusion MRI models of white matter. Front Physiol. 2017;5:61. https://doi.org/10.3389/fphy.2017.00061
Öz G, Alger JR, Barker PB, et al. Clinical proton MR spectroscopy in central nervous system disorders. Radiology. 2014;270(3):658-679. https://doi.org/10.1148/radiol.13130531
Orije J, Kara F, Guglielmetti C, et al. Longitudinal monitoring of metabolic alterations in cuprizone mouse model of multiple sclerosis using 1H-magnetic resonance spectroscopy. NeuroImage. 2015;114:128-135. https://doi.org/10.1016/j.neuroimage.2015.04.012
Gudi V, Gingele S, Skripuletz T, Stangel M. Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned. Front Cell Neurosci. 2014;8:73. https://doi.org/10.3389/fncel.2014.00073
Matsushima GK, Morell P. The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol. 2006;11(1):107-116. https://doi.org/10.1111/j.1750-3639.2001.tb00385.x
Remington LT, Babcock AA, Zehntner SP, Owens T. Microglial recruitment, activation, and proliferation in response to primary demyelination. Am J Pathol. 2007;170(5):1713-1724. https://doi.org/10.2353/ajpath.2007.060783
Morell P, Barrett CV, Mason JL, et al. Gene expression in brain during cuprizone-induced demyelination and remyelination. Mol Cell Neurosci. 1998;12(4-5):220-227. https://doi.org/10.1006/mcne.1998.0715
Goldberg J, Clarner T, Beyer C, Kipp M. Anatomical distribution of cuprizone-induced lesions in C57BL6 mice. J Mol Neurosci. 2015;57(2):166-175. https://doi.org/10.1007/s12031-015-0595-5
Gudi V, Moharregh-Khiabani D, Skripuletz T, et al. Regional differences between grey and white matter in cuprizone induced demyelination. Brain Res. 2009;1283:127-138. https://doi.org/10.1016/j.brainres.2009.06.005
Nicolay K, Braun KPJ, de Graaf RA, Dijkhuizen RM, Kruiskamp MJ. Diffusion NMR spectroscopy. NMR Biomed. 2001;14(2):94-111. https://doi.org/10.1002/nbm.686
Palombo M, Shemesh N, Ronen I, Valette J. Insights into brain microstructure from in vivo DW-MRS. Neuroimage. 2018;182:97-116. https://doi.org/10.1016/j.neuroimage.2017.11.028
Ronen I, Valette J. Diffusion-weighted magnetic resonance spectroscopy. eMagRes. 2015;4:733-750.
Ercan E, Magro-Checa C, Valabregue R, et al. Glial and axonal changes in systemic lupus erythematosus measured with diffusion of intracellular metabolites. Brain. 2016;139(5):1447-1457. https://doi.org/10.1093/brain/aww031
Ligneul C, Palombo M, Hernández-Garzón E, et al. Diffusion-weighted magnetic resonance spectroscopy enables cell-specific monitoring of astrocyte reactivity in vivo. NeuroImage. 2019;191:457-469. https://doi.org/10.1016/j.neuroimage.2019.02.046
Wood ET, Ronen I, Techawiboonwong A, et al. Investigating axonal damage in multiple sclerosis by diffusion tensor spectroscopy. J Neurosci. 2012;32(19):6665-6669. https://doi.org/10.1523/JNEUROSCI.0044-12.2012
Kipp M, Clarner T, Dang J, Copray S, Beyer C. The cuprizone animal model: new insights into an old story. Acta Neuropathol. 2009;118(6):723-736. https://doi.org/10.1007/s00401-009-0591-3
Skripuletz T, Gudi V, Hackstette D, Stangel M. De- and remyelination in the CNS white and grey matter induced by cuprizone: the old, the new, and the unexpected. Histol Histopathol. 2011;26:1585-1597. https://doi.org/10.14670/HH-26.1585
Taylor LC, Gilmore W, Ting JP-Y, Matsushima GK. Cuprizone induces similar demyelination in male and female C57BL/6 mice and results in disruption of the estrous cycle. J Neurosci Res. 2010;88(2):391-402. https://doi.org/10.1002/jnr.22215
Pfeifenbring S, Nessler S, Wegner C, Stadelmann C, Brück W. Remyelination after cuprizone-induced demyelination is accelerated in juvenile mice. J Neuropathol Exp Neurol. 2015;74(8):756-766. https://doi.org/10.1097/NEN.0000000000000214
Hill I, Palombo M, Santin M, et al. Machine learning based white matter models with permeability: an experimental study in cuprizone treated in-vivo mouse model of axonal demyelination. NeuroImage. 2021;224:117425. https://doi.org/10.1016/j.neuroimage.2020.117425
Ligneul C, Palombo M, Valette J. Metabolite diffusion up to very high b in the mouse brain in vivo: revisiting the potential correlation between relaxation and diffusion properties. Magn Reson Med. 2017;77(4):1390-1398. https://doi.org/10.1002/mrm.26217
Tkac I, Starcuk Z, Choi I-Y, Gruetter R. In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med. 1999;41(4):649-656.
de Brouwer H. Evaluation of algorithms for automated phase correction of NMR spectra. J Magn Reson. 2009;201(2):230-238. https://doi.org/10.1016/j.jmr.2009.09.017
Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30(6):672-679.
Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed. 2000;13(3):129-153.
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671-675. https://doi.org/10.1038/nmeth.2089
Choi J-K, Dedeoglu A, Jenkins BG. Application of MRS to mouse models of neurodegenerative illness. NMR Biomed. 2007;20(3):216-237. https://doi.org/10.1002/nbm.1145
Urenjak J, Williams S, Gadian D, Noble M. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci. 1993;13(3):981-989. https://doi.org/10.1523/JNEUROSCI.13-03-00981.1993
Najac C, Branzoli F, Ronen I, Valette J. Brain intracellular metabolites are freely diffusing along cell fibers in grey and white matter, as measured by diffusion-weighted MR spectroscopy in the human brain at 7 T. Brain Struct Funct. 2016;221(3):1245-1254. https://doi.org/10.1007/s00429-014-0968-5
Palombo M, Ligneul C, Valette J. Modeling diffusion of intracellular metabolites in the mouse brain up to very high diffusion-weighting: diffusion in long fibers (almost) accounts for non-monoexponential attenuation. Magn Reson Med. 2017;77(1):343-350. https://doi.org/10.1002/mrm.26548
Palombo M, Ligneul C, Najac C, et al. New paradigm to assess brain cell morphology by diffusion-weighted MR spectroscopy in vivo. Proc Natl Acad Sci USA. 2016;113(24):6671-6676. https://doi.org/10.1073/pnas.1504327113
Valette J, Ligneul C, Marchadour C, Najac C, Palombo M. Brain metabolite diffusion from ultra-short to ultra-long time scales: what do we learn, where should we go? Front Neurosci. 2018;12:2. https://doi.org/10.3389/fnins.2018.00002
Escartin C. Ciliary neurotrophic factor activates astrocytes, redistributes their glutamate transporters GLAST and GLT-1 to raft microdomains, and improves glutamate handling in vivo. J Neurosci. 2006;26(22):5978-5989. https://doi.org/10.1523/JNEUROSCI.0302-06.2006
Bodini B, Branzoli F, Poirion E, et al. Dysregulation of energy metabolism in multiple sclerosis measured in vivo with diffusion-weighted spectroscopy. Mult Scler. 2018;24(3):313-321. https://doi.org/10.1177/1352458517698249
Pasquini LA, Calatayud CA, Bertone Uña AL, Millet V, Pasquini JM, Soto EF. The neurotoxic effect of cuprizone on oligodendrocytes depends on the presence of pro-inflammatory cytokines secreted by microglia. Neurochem Res. 2007;32(2):279-292. https://doi.org/10.1007/s11064-006-9165-0
Gustafsson MC, Dahlqvist O, Jaworski J, Lundberg P, Landtblom A-ME. Low choline concentrations in normal-appearing white matter of patients with multiple sclerosis and normal MR imaging brain scans. Am J Neuroradiol. 2007;28(7):1306-1312. https://doi.org/10.3174/ajnr.A0580
Oh J, Pelletier D, Nelson SJ. Corpus callosum axonal injury in multiple sclerosis measured by proton magnetic resonance spectroscopic imaging. Arch Neurol. 2004;61(7):1081-1086. https://doi.org/10.1001/archneur.61.7.1081
Sajja BR, Wolinsky JS, Narayana PA. Proton magnetic resonance spectroscopy in multiple sclerosis. Neuroimaging Clin N Am. 2009;19(1):45-58. https://doi.org/10.1016/j.nic.2008.08.002
Bianchi MC, Tosetti M, Battini R, et al. Proton MR spectroscopy of mitochondrial diseases: analysis of brain metabolic abnormalities and their possible diagnostic relevance. Am J Neuroradiol. 2003;24:1958-1966.