Single-cell RNA sequencing reveals intratumoral heterogeneity in primary uveal melanomas and identifies HES6 as a driver of the metastatic disease.


Journal

Cell death and differentiation
ISSN: 1476-5403
Titre abrégé: Cell Death Differ
Pays: England
ID NLM: 9437445

Informations de publication

Date de publication:
06 2021
Historique:
received: 04 08 2020
accepted: 29 12 2020
revised: 27 12 2020
pubmed: 20 1 2021
medline: 24 2 2022
entrez: 19 1 2021
Statut: ppublish

Résumé

Intratumor heterogeneity has been recognized in numerous cancers as a major source of metastatic dissemination. In uveal melanomas, the existence and identity of specific subpopulations, their biological function and their contribution to metastasis remain unknown. Here, in multiscale analyses using single-cell RNA sequencing of six different primary uveal melanomas, we uncover an intratumoral heterogeneity at the genomic and transcriptomic level. We identify distinct transcriptional cell states and diverse tumor-associated populations in a subset of the samples. We also decipher a gene regulatory network underlying an invasive and poor prognosis state driven in part by the transcription factor HES6. HES6 heterogenous expression has been validated by RNAscope assays within primary human uveal melanomas, which further unveils the existence of these cells conveying a dismal prognosis in tumors diagnosed with a favorable outcome using bulk analyses. Depletion of HES6 impairs proliferation, migration and metastatic dissemination in vitro and in vivo using the chick chorioallantoic membrane assay, demonstrating the essential role of HES6 in uveal melanomas. Thus, single-cell analysis offers an unprecedented view of primary uveal melanoma heterogeneity, identifies bona fide biomarkers for metastatic cells in the primary tumor, and reveals targetable modules driving growth and metastasis formation. Significantly, our findings demonstrate that HES6 is a valid target to stop uveal melanoma progression.

Identifiants

pubmed: 33462406
doi: 10.1038/s41418-020-00730-7
pii: 10.1038/s41418-020-00730-7
pmc: PMC8185008
doi:

Substances chimiques

Basic Helix-Loop-Helix Transcription Factors 0
HES6 protein, human 0
Repressor Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1990-2000

Subventions

Organisme : Institut National Du Cancer (French National Cancer Institute)
ID : INCA-12824
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-10-INBS-09-03
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-10-INBS-09-02
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-15-IDEX-01

Références

Rietschel P, Panageas KS, Hanlon C, Patel A, Abramson DH, Chapman PB. Variates of survival in metastatic uveal melanoma. J Clin Oncol. 2005;23:8076–80.
pubmed: 16258106 doi: 10.1200/JCO.2005.02.6534
Nabil AA, Marie S, Marc-Henri S, Nathalie C, Laurence D, Sophie PN, et al. Upcoming translational challenges for uveal melanoma. Br J Cancer. 2015;113:1249–53.
pmcid: 4815787 doi: 10.1038/bjc.2015.269
Pandiani C, Beranger GE, Leclerc J, Ballotti R, Bertolotto C. Focus on cutaneous and uveal melanoma specificities. Genes Dev. 2017;31:724–43.
pubmed: 28512236 pmcid: 5435887 doi: 10.1101/gad.296962.117
Yang J, Manson DK, Marr BP, Carvajal RD. Treatment of uveal melanoma: where are we now? Ther Adv Med Oncol. 2018. https://doi.org/10.1177/1758834018757175 .
Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352:189–96.
pubmed: 27124452 pmcid: 4944528 doi: 10.1126/science.aad0501
Kemper K, Krijgsman O, Cornelissen-Steijger P, Shahrabi A, Weeber F, Song JY, et al. Intra- and inter-tumor heterogeneity in a vemurafenib-resistant melanoma patient and derived xenografts. EMBO Mol Med. 2015;7:1104–18.
pubmed: 26105199 pmcid: 4568946 doi: 10.15252/emmm.201404914
Rambow F, Marine J, Goding CR. Melanoma plasticity and phenotypic diversity: therapeutic barriers and opportunities. Genes Dev. 2019;33:1295–318.
pubmed: 31575676 pmcid: 6771388 doi: 10.1101/gad.329771.119
Onken MD, Worley LA, Ehlers JP, Harbour JW. Gene expression profiling in uveal melanoma reveals two molecular classes and predicts metastatic death. Cancer Res. 2004;64:7205–9.
pubmed: 15492234 pmcid: 5407684 doi: 10.1158/0008-5472.CAN-04-1750
Durante MA, Rodriguez DA, Kurtenbach S, Kuznetsov JN, Sanchez MI, Decatur CL, et al. Single-cell analysis reveals new evolutionary complexity in uveal melanoma. Nat Commun. 2020;11:496.
pubmed: 31980621 pmcid: 6981133 doi: 10.1038/s41467-019-14256-1
Karlsson J, Nilsson LM, Mitra S, Alsén S, Shelke GV, Sah VR, et al. Molecular profiling of driver events in metastatic uveal melanoma. Nat Commun. 2020;11:1894.
pubmed: 32313009 pmcid: 7171146 doi: 10.1038/s41467-020-15606-0
Figueiredo CR, Kalirai H, Sacco JJ, Azevedo RA, Duckworth A, Slupsky JR, et al. Loss of BAP1 expression is associated with an immunosuppressive microenvironment in uveal melanoma, with implications for immunotherapy development. J Pathol. 2020;250:420–39.
pubmed: 31960425 pmcid: 7216965 doi: 10.1002/path.5384
Triozzi PL, Schoenfield L, Plesec T, Saunthararajah Y, Tubbs RR, Singh AD. Molecular profiling of primary uveal melanomas with tumor-infiltrating lymphocytes. Oncoimmunology. 2014;8:e947169.
pubmed: 31646061 pmcid: 6791435 doi: 10.4161/21624011.2014.947169
Chen PW, Murray TG, Uno T, Salgaller ML, Reddy RKB. Expression of MAGE genes in ocular melanoma during progression from primary to metastatic disease. Clin Exp Metastasis. 1997;15:509–18.
pubmed: 9247253 doi: 10.1023/A:1018479011340
De Waard‐Siebinga I, Blom DR, Griffioen M, Schrier PI, Hoogendoorn E, Beverstock G, et al. Establishment and characterization of an uveal‐melanoma cell line. Int J Cancer. 1995;62:155–61.
pubmed: 7622289 doi: 10.1002/ijc.2910620208
Luyten GP, Naus NC, Mooy CM, Hagemeijer A, Kan-Mitchell J, Van Drunen E, et al. Establishment and characterization of primary and metastatic uveal melanoma cell lines. Int J Cancer. 1996;66:380–7.
pubmed: 8621261 doi: 10.1002/(SICI)1097-0215(19960503)66:3<380::AID-IJC19>3.0.CO;2-F
Griewank KG, Yu X, Khalili J, Sozen MM, Stempke-Hale K, Bernatchez C, et al. Genetic and molecular characterization of uveal melanoma cell lines. Pigment Cell Melanoma Res. 2012;25:182–7.
pubmed: 22236444 pmcid: 3288394 doi: 10.1111/j.1755-148X.2012.00971.x
Shain AH, Bagger MM, Yu R, Chang D, Liu S, Vemula S, et al. The genetic evolution of metastatic uveal melanoma. Nat Genet. 2019;51:1123–30.
pubmed: 31253977 pmcid: 6632071 doi: 10.1038/s41588-019-0440-9
Larribère L, Utikal J. Update on gna alterations in cancer: Implications for uveal melanoma treatment. Cancers. 2020;12:1–18.
doi: 10.3390/cancers12061524
Johansson P, Aoude LG, Wadt K, Glasson WJ, Warrier SK, Hewitt AW, et al. Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4. Oncotarget. 2016;7:4624–31.
pubmed: 26683228 doi: 10.18632/oncotarget.6614
Moore AR, Ceraudo E, Sher JJ, Guan Y, Shoushtari AN, Chang MT, et al. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nat Genet. 2016;48:675–80.
pubmed: 27089179 pmcid: 5032652 doi: 10.1038/ng.3549
Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW, et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene. 2013;32:4814–24.
pubmed: 23128392 doi: 10.1038/onc.2012.494
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344:1396–401.
pubmed: 24925914 pmcid: 4123637 doi: 10.1126/science.1254257
Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083–6.
pubmed: 28991892 pmcid: 5937676 doi: 10.1038/nmeth.4463
Meir T, Dror R, Yu X, Qian J, Simon I, Pe’er J, et al. Molecular characteristics of liver metastases from uveal melanoma. Invest Ophthalmol Vis Sci. 2007;48:4890–6.
pubmed: 17962435 doi: 10.1167/iovs.07-0215
Xu Y, Liu X, Zhang H, Zhu Z, Wu X, Wu X, et al. Overexpression of HES6 has prognostic value and promotes metastasis via the Wnt/beta-catenin signaling pathway in colorectal cancer. Oncol Rep. 2018;40:1261–74.
pubmed: 30015909 pmcid: 6072391
Haapa-Paananen S, Kiviluoto S, Waltari M, Puputti M, Mpindi JP, Kohonen P, et al. HES6 gene is selectively overexpressed in glioma and represents an important transcriptional regulator of glioma proliferation. Oncogene. 2012;31:1299–310.
pubmed: 21785461 doi: 10.1038/onc.2011.316
Wickramasinghe CM, Domaschenz R, Amagase Y, Williamson D, Missiaglia E, Shipley J, et al. HES6 enhances the motility of alveolar rhabdomyosarcoma cells. Exp Cell Res. 2013;319:103–12.
pubmed: 22982728 doi: 10.1016/j.yexcr.2012.08.010
Asnaghi L, Ebrahimi KB, Schreck KC, Bar EE, Coonfield ML, Bell WR, et al. Notch signaling promotes growth and invasion in uveal melanoma. Clin Cancer Res. 2012;18:654–65.
pubmed: 22228632 pmcid: 4648284 doi: 10.1158/1078-0432.CCR-11-1406
Asnaghi L, Handa JT, Merbs SL, Harbour JW, Eberhart CG. A role for Jag2 in promoting uveal melanoma dissemination and growth. Investig Ophthalmol Vis Sci. 2013;54:295–306.
doi: 10.1167/iovs.12-10209
Dopierala J, Damato BE, Lake SL, Taktak AF, Coupland SE. Genetic heterogeneity in uveal melanoma assessed by multiplex ligation-dependent probe amplification. Invest Ophthalmol Vis Sci. 2010;51:4898–905.
pubmed: 20484589 doi: 10.1167/iovs.09-5004
Goding CR, Arnheiter H. MITF—the first 25 years. Genes Dev. 2019;33:983–1007.
pubmed: 31123060 pmcid: 6672050 doi: 10.1101/gad.324657.119
Cheli Y, Ohanna M, Ballotti R, Bertolotto C. Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res. 2010;23:27–40.
pubmed: 19995375 doi: 10.1111/j.1755-148X.2009.00653.x
Ohanna M, Giuliano S, Bonet C, Imbert V, Hofman V, Zangari J, et al. Senescent cells develop a parp-1 and nuclear factor-κB-associated secretome (PNAS). Genes Dev. 2011;25:1245–61.
pubmed: 21646373 pmcid: 3127427 doi: 10.1101/gad.625811
Ohanna M, Cheli Y, Bonet C, Bonazzi VF, Allegra M, Giuliano S, et al. Secretome from senescent melanoma engages the STAT3 pathway to favor reprogramming of naive melanoma towards a tumor-initiating cell phenotype. Oncotarget. 2013;4:2212–24.
pubmed: 24344100 pmcid: 3926821 doi: 10.18632/oncotarget.1143
Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell. 2008;133:1019–31.
pubmed: 18555778 doi: 10.1016/j.cell.2008.03.039
Chang TP, Vancurova I. Bcl3 regulates pro-survival and pro-inflammatory gene expression in cutaneous T-cell lymphoma. Biochim Biophys Acta - Mol Cell Res. 2014;1843:2620–30.
doi: 10.1016/j.bbamcr.2014.07.012
Riesenberg S, Groetchen A, Siddaway R, Bald T, Reinhardt J, Smorra D, et al. MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment. Nat Commun. 2015;6:8755.
pubmed: 26530832 doi: 10.1038/ncomms9755
Landsberg J, Kohlmeyer J, Renn M, Bald T, Rogava M, Cron M, et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature. 2012;490:412–6.
pubmed: 23051752 doi: 10.1038/nature11538
Robertson AG, Shih J, Yau C, Gibb EA, Oba J, Mungall KL, et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell. 2017;32:204–20 e15.
pubmed: 28810145 pmcid: 5619925 doi: 10.1016/j.ccell.2017.07.003
Lawson CD, Burridge K. The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases. 2014;5:e27958.
pubmed: 24607953 pmcid: 4114617 doi: 10.4161/sgtp.27958
Feng X, Degese MS, Iglesias-Bartolome R, Vaque JP, Molinolo AA, Rodrigues M, et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell. 2014;25:831–45.
pubmed: 24882515 pmcid: 4074519 doi: 10.1016/j.ccr.2014.04.016
Miskolczi Z, Smith MP, Rowling EJ, Ferguson J, Barriuso J, Wellbrock C. Collagen abundance controls melanoma phenotypes through lineage-specific microenvironment sensing. Oncogene. 2018;37:3166–82.
pubmed: 29545604 pmcid: 5992128 doi: 10.1038/s41388-018-0209-0
Roma J, Masià A, Reventós J, De Toledo JS, Gallego S. Notch pathway inhibition significantly reduces rhabdomyosarcoma invasiveness and mobility in vitro. Clin Cancer Res. 2011;17:505–13.
pubmed: 21177409 doi: 10.1158/1078-0432.CCR-10-0166
Trolet J, Hupe P, Huon I, Lebigot I, Decraene C, Delattre O, et al. Genomic profiling and identification of high-risk uveal melanoma by array CGH analysis of primary tumors and liver metastases. Invest Ophthalmol Vis Sci. 2009;50:2572–80.
pubmed: 19151381 doi: 10.1167/iovs.08-2296

Auteurs

Charlotte Pandiani (C)

Université Côte d'Azur, Nice, France.
Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France.

Thomas Strub (T)

Université Côte d'Azur, Nice, France.
Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France.

Nicolas Nottet (N)

Université Côte d'Azur, Nice, France.
Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France.

Yann Cheli (Y)

Université Côte d'Azur, Nice, France.
Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France.

Giovanni Gambi (G)

Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.

Karine Bille (K)

Université Côte d'Azur, Nice, France.
Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France.

Chrystel Husser (C)

Université Côte d'Azur, Nice, France.
Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France.

Mélanie Dalmasso (M)

Université Côte d'Azur, Nice, France.
Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France.

Guillaume Béranger (G)

Université Côte d'Azur, Nice, France.
Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France.

Sandra Lassalle (S)

Université Côte d'Azur, Nice, France.
Laboratoire de Pathologie clinique et expérimentale, biobanque BB-0033-00025, and IRCAN team 4, FHU OncoAge, Nice, France.

Virginie Magnone (V)

Université Côte d'Azur, Nice, France.
CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France.

Florence Pédeutour (F)

Université Côte d'Azur, Nice, France.
Laboratoire de Génétique des tumeurs solides and IRCAN, Nice, France.

Marie Irondelle (M)

Université Côte d'Azur, Nice, France.
Inserm, Imagery platform, Centre Méditerranéen de Médecine Moléculaire, Nice, France.

Célia Maschi (C)

Université Côte d'Azur, Nice, France.
Pasteur 2 Teaching Hospital, Department of Ophthalmology, Nice, France.

Sacha Nahon-Estève (S)

Université Côte d'Azur, Nice, France.
Pasteur 2 Teaching Hospital, Department of Ophthalmology, Nice, France.

Arnaud Martel (A)

Université Côte d'Azur, Nice, France.
Pasteur 2 Teaching Hospital, Department of Ophthalmology, Nice, France.

Jean-Pierre Caujolle (JP)

Université Côte d'Azur, Nice, France.
Pasteur 2 Teaching Hospital, Department of Ophthalmology, Nice, France.

Paul Hofman (P)

Université Côte d'Azur, Nice, France.
Laboratoire de Pathologie clinique et expérimentale, biobanque BB-0033-00025, and IRCAN team 4, FHU OncoAge, Nice, France.

Kévin LeBrigand (K)

Université Côte d'Azur, Nice, France.
CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France.

Irwin Davidson (I)

Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.

Stéphanie Baillif (S)

Université Côte d'Azur, Nice, France.
Pasteur 2 Teaching Hospital, Department of Ophthalmology, Nice, France.

Pascal Barbry (P)

Université Côte d'Azur, Nice, France.
CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France.

Robert Ballotti (R)

Université Côte d'Azur, Nice, France.
Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France.

Corine Bertolotto (C)

Université Côte d'Azur, Nice, France. corine.bertolotto-ballotti@inserm.fr.
Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France. corine.bertolotto-ballotti@inserm.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH