The Disordered Spindly C-terminus Interacts with RZZ Subunits ROD-1 and ZWL-1 in the Kinetochore through the Same Sites in C. Elegans.
Animals
Caenorhabditis elegans
Caenorhabditis elegans Proteins
/ chemistry
Dyneins
/ chemistry
Humans
Intrinsically Disordered Proteins
/ chemistry
Kinetochores
/ chemistry
Magnetic Resonance Spectroscopy
Protein Binding
Protein Conformation
Protein Interaction Domains and Motifs
Repressor Proteins
/ chemistry
Spindle Apparatus
/ metabolism
Structure-Activity Relationship
Intrinsically disordered protein
Nuclear magnetic resonance
ROD/ZW10/ZWILCH
RZZ
Spindly
Journal
Journal of molecular biology
ISSN: 1089-8638
Titre abrégé: J Mol Biol
Pays: Netherlands
ID NLM: 2985088R
Informations de publication
Date de publication:
19 02 2021
19 02 2021
Historique:
received:
28
10
2020
revised:
29
12
2020
accepted:
31
12
2020
pubmed:
16
1
2021
medline:
24
4
2021
entrez:
15
1
2021
Statut:
ppublish
Résumé
Spindly is a dynein adaptor involved in chromosomal segregation during cell division. While Spindly's N-terminal domain binds to the microtubule motor dynein and its activator dynactin, the C-terminal domain (Spindly-C) binds its cargo, the ROD/ZW10/ZWILCH (RZZ) complex in the outermost layer of the kinetochore. In humans, Spindly-C binds to ROD, while in C. elegans Spindly-C binds to both Zwilch (ZWL-1) and ROD-1. Here, we employed various biophysical techniques to characterize the structure, dynamics and interaction sites of C. elegans Spindly-C. We found that despite the overall disorder, there are two regions with variable α-helical propensity. One of these regions is located in the C-terminal half and is compact; the second is sparsely populated in the N-terminal half. The interactions with both ROD-1 and ZWL-1 are mostly mediated by the same two sequentially remote disordered segments of Spindly-C, which are C-terminally adjacent to the helical regions. The findings suggest that the Spindly-C binding sites on ROD-1 in the ROD-1/ZWL-1 complex context are either shielded or conformationally weakened by the presence of ZWL-1 such that only ZWL-1 directly interacts with Spindly-C in C. elegans.
Identifiants
pubmed: 33450249
pii: S0022-2836(21)00006-1
doi: 10.1016/j.jmb.2021.166812
pmc: PMC7870574
mid: NIHMS1664410
pii:
doi:
Substances chimiques
Caenorhabditis elegans Proteins
0
Intrinsically Disordered Proteins
0
Repressor Proteins
0
Dyneins
EC 3.6.4.2
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
166812Subventions
Organisme : NCI NIH HHS
ID : P30 CA046934
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM083127
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM130694
Pays : United States
Organisme : NIH HHS
ID : S10 OD025020
Pays : United States
Informations de copyright
Copyright © 2021 Elsevier Ltd. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Références
Chromosome Res. 2015 Jun;23(2):333-42
pubmed: 25772408
Proteins. 2005 Jun 1;59(4):687-96
pubmed: 15815974
Cell Cycle. 2011 Feb 1;10(3):449-56
pubmed: 21252629
EMBO J. 2002 May 15;21(10):2496-506
pubmed: 12006501
J Cell Biol. 2017 Apr 3;216(4):943-960
pubmed: 28320824
J Cell Biol. 2007 Jun 18;177(6):1005-15
pubmed: 17576797
PLoS Biol. 2019 Jan 7;17(1):e3000100
pubmed: 30615611
J Biomol NMR. 1995 Nov;6(3):277-93
pubmed: 8520220
J Cell Sci. 2019 Mar 15;132(6):
pubmed: 30877148
Genes Dev. 2008 Sep 1;22(17):2385-99
pubmed: 18765790
Elife. 2018 Jun 26;7:
pubmed: 29944118
J Mol Biol. 2018 Aug 3;430(16):2439-2452
pubmed: 29733855
J Biomol NMR. 2019 Feb;73(1-2):11-17
pubmed: 30613903
J Am Chem Soc. 2012 May 16;134(19):8148-61
pubmed: 22554188
J Cell Biol. 2001 Dec 24;155(7):1159-72
pubmed: 11756470
Bioinformatics. 2007 Nov 1;23(21):2947-8
pubmed: 17846036
Nat Cell Biol. 2018 Jul;20(7):800-810
pubmed: 29915359
Genes Dev. 2010 May;24(9):957-71
pubmed: 20439434
Bioinformatics. 2015 Apr 15;31(8):1325-7
pubmed: 25505092
Mol Biol Cell. 2010 Jun 15;21(12):1968-81
pubmed: 20427577
Cold Spring Harb Perspect Biol. 2014 Jul 01;6(7):a015826
pubmed: 24984773
Trends Cell Biol. 2020 Aug;30(8):653-667
pubmed: 32386879
EMBO J. 2020 Jan 15;39(2):e100789
pubmed: 31849090
J Biomol NMR. 2012 Apr;52(4):315-27
pubmed: 22331404
J Biomol NMR. 2009 Aug;44(4):213-23
pubmed: 19548092
J Cell Biol. 2009 Jun 1;185(5):859-74
pubmed: 19468067
J Cell Biol. 2017 Apr 3;216(4):855-857
pubmed: 28320823
Genes Dev. 2013 Jun 1;27(11):1233-46
pubmed: 23723415
J Cell Biol. 2015 Sep 14;210(6):899-916
pubmed: 26347137
Cell Cycle. 2020 Jul;19(14):1716-1726
pubmed: 32544383
Protein Sci. 2006 Dec;15(12):2795-804
pubmed: 17088319
J Cell Sci. 2013 Jun 1;126(Pt 11):2319-29
pubmed: 23729742
Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):12155-12163
pubmed: 32430325
Bioinformatics. 2009 May 1;25(9):1189-91
pubmed: 19151095
Nat Rev Mol Cell Biol. 2018 Jun;19(6):382-398
pubmed: 29662141
Annu Rev Cell Dev Biol. 2015;31:83-108
pubmed: 26436706
Cell Cycle. 2009 Feb 1;8(3):338-44
pubmed: 19177000
J Cell Biol. 2015 Mar 30;208(7):881-96
pubmed: 25825516
Cancer Lett. 2017 May 28;394:33-42
pubmed: 28249757
J Cell Biol. 2017 Apr 3;216(4):961-981
pubmed: 28320825
Methods Enzymol. 1996;266:540-53
pubmed: 8743705
Curr Biol. 2018 Nov 5;28(21):3408-3421.e8
pubmed: 30415699
Structure. 2010 May 12;18(5):616-26
pubmed: 20462495
J Magn Reson. 2014 Apr;241:74-85
pubmed: 24656082
Mol Biol Cell. 2015 May 15;26(10):1845-56
pubmed: 25808490
Nat Rev Mol Cell Biol. 2007 May;8(5):379-93
pubmed: 17426725