Methionine restriction plus overload improves skeletal muscle and metabolic health in old mice on a high fat diet.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
13 01 2021
Historique:
received: 05 09 2020
accepted: 17 12 2020
entrez: 14 1 2021
pubmed: 15 1 2021
medline: 11 8 2021
Statut: epublish

Résumé

Methionine restriction (MR) has been shown to reduce the age-induced inflammation. We examined the effect of MR (0.17% methionine, 10% kCal fat) and MR + high fat diet (HFD) (0.17% methionine, 45% kCal fat) on body mass, food intake, glucose tolerance, resting energy expenditure, hind limb muscle mass, denervation-induced atrophy and overload-induced hypertrophy in young and old mice. In old mice, MR and MR + HFD induced a decrease in body mass. Muscle mass per body mass was lower in old compared to young mice. MR restored some of the HFD-induced reduction in muscle oxidative capacity. The denervation-induced atrophy of the m. gastrocnemius was larger in animals on MR than on a control diet, irrespective of age. Old mice on MR had larger hypertrophy of m. plantaris. Irrespective of age, MR and MR + HFD had better glucose tolerance compared to the other groups. Young and old mice on MR + HFD had a higher resting VO

Identifiants

pubmed: 33441954
doi: 10.1038/s41598-021-81037-6
pii: 10.1038/s41598-021-81037-6
pmc: PMC7806605
doi:

Substances chimiques

Methionine AE28F7PNPL

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1260

Références

Rosenberg, I. H. Summary comments: Epidemiological and methodological problems in determining nutritional status of older persons. Am. J. Clin. Nutr. 50, 1231–1233 (1989).
doi: 10.1093/ajcn/50.5.1231
Garrow, J. S. Obesity and related diseases. Appetite. https://doi.org/10.1016/0195-6663(89)90017-2 (1988).
doi: 10.1016/0195-6663(89)90017-2
Kalinkovich, A. & Livshits, G. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res. Rev. 35, 200–221 (2017).
pubmed: 27702700 doi: 10.1016/j.arr.2016.09.008
Rolland, Y. et al. Sarcopenia: Its assessment, etiology, pathogenesis, consequences and future perspectives. J. Nutr. Health Aging 12, 433–450 (2008).
pubmed: 18615225 pmcid: 3988678 doi: 10.1007/BF02982704
Elia, M., Ritz, P. & Stubbs, R. J. Total energy expenditure in the elderly. Eur. J. Clin. Nutr. 54, S92–S103 (2000).
pubmed: 11041080 doi: 10.1038/sj.ejcn.1601030
Cooper, J. A. et al. Longitudinal change in energy expenditure and effects on energy requirements of the elderly. Nutr. J. https://doi.org/10.1186/1475-2891-12-73 (2013).
doi: 10.1186/1475-2891-12-73 pubmed: 23742706 pmcid: 3679966
Wang, J., Leung, K. S., Chow, S. K. H. & Cheung, W. H. Inflammation and age-associated skeletal muscle deterioration (sarcopaenia). J. Orthop. Transl. 10, 94–101 (2017).
Lang, C. H. Elevated plasma free fatty acids decrease basal protein synthesis, but not the anabolic effect of leucine, in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 291, E666 (2006).
pubmed: 16684854 doi: 10.1152/ajpendo.00065.2006
Guillet, C. et al. Changes in basal and insulin and amino acid response of whole body and skeletal muscle proteins in obese men. J. Clin. Endocrinol. Metab. 94, 3044–3050 (2009).
pubmed: 19470633 doi: 10.1210/jc.2008-2216
Nilsson, M. I. et al. Abnormal protein turnover and anabolic resistance to exercise in sarcopenic obesity. FASEB J. 27, 3905–3916 (2013).
pubmed: 23804240 doi: 10.1096/fj.12-224006
Mounier, R. et al. Antagonistic control of muscle cell size by AMPK and mTORC1. Cell Cycle 10, 2640–2646 (2011).
pubmed: 21799304 doi: 10.4161/cc.10.16.17102
Hilton, T. N., Tuttle, L. J., Bohnert, K. L., Mueller, M. J. & Sinacore, D. R. Excessive adipose tissue infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and peripheral neuropathy: Association with performance and function. Phys. Ther. 88, 1336–1344 (2008).
pubmed: 18801853 pmcid: 2579904 doi: 10.2522/ptj.20080079
Tardif, N. et al. Muscle ectopic fat deposition contributes to anabolic resistance in obese sarcopenic old rats through eIF2α activation. Aging Cell 13, 1001–1011 (2014).
pubmed: 25139155 pmcid: 4326920 doi: 10.1111/acel.12263
Cleasby, M. E., Jamieson, P. M. & Atherton, P. J. Insulin resistance and sarcopenia: Mechanistic links between common co-morbidities. J. Endocrinol. 229, R67–R81 (2016).
pubmed: 26931135 doi: 10.1530/JOE-15-0533
Orgeron, M. L. et al. The impact of dietary methionine restriction on biomarkers of metabolic health. Prog. Mol. Biol. Transl. Sci. 121, 351–376 (2014).
pubmed: 24373243 pmcid: 4049285 doi: 10.1016/B978-0-12-800101-1.00011-9
Harridge, S. D. R., Kryger, A. & Stensgaard, A. Knee extensor strength, activation, and size in very elderly people following strength training. Muscle Nerve 22, 831–839 (1999).
pubmed: 10398199 doi: 10.1002/(SICI)1097-4598(199907)22:7<831::AID-MUS4>3.0.CO;2-3
Faulks, S. C., Turner, N., Else, P. L. & Hulbert, A. J. Calorie restriction in mice: Effects on body composition, daily activity, metabolic rate, mitochondrial reactive oxygen species production, and membrane fatty acid composition. J. Gerontol. A Biol. Sci. Med. Sci. 61, 781–794 (2006).
pubmed: 16912094 doi: 10.1093/gerona/61.8.781
Schübel, R. et al. Effects of intermittent and continuous calorie restriction on body weight and metabolism over 50 wk: A randomized controlled trial. Am. J. Clin. Nutr. 108, 933–945 (2018).
pubmed: 30475957 pmcid: 6915821 doi: 10.1093/ajcn/nqy196
Orentreich, N., Matias, J. R., DeFelice, A. & Zimmerman, J. A. Low methionine ingestion by rats extends life span. J. Nutr. 123, 269–274 (1993).
pubmed: 8429371
Perrone, C. E., Malloy, V. L., Orentreich, D. S. & Orentreich, N. Metabolic adaptations to methionine restriction that benefit health and lifespan in rodents. Exp. Gerontol. 48, 654–660 (2013).
pubmed: 22819757 doi: 10.1016/j.exger.2012.07.005
Forney, L. A., Wanders, D., Stone, K. P., Pierse, A. & Gettys, T. W. Concentration-dependent linkage of dietary methionine restriction to the components of its metabolic phenotype. Obesity 25, 730–738 (2017).
pubmed: 28261952 doi: 10.1002/oby.21806
Wanders, D. et al. The components of age-dependent effects of dietary methionine restriction on energy balance in rats. Obesity. https://doi.org/10.1002/oby.22146 (2018).
doi: 10.1002/oby.22146 pubmed: 29504255
Morley, J. E. & Silver, A. J. Anorexia in the elderly. Neurobiol. Aging 9, 9–16 (1988).
pubmed: 2898107 doi: 10.1016/S0197-4580(88)80004-6
Silver, A. J., Guillen, C. P., Kahl, M. J. & Morley, J. E. Effect of aging on body fat. J. Am. Geriatr. Soc. 41, 211–213 (1993).
pubmed: 8440839 doi: 10.1111/j.1532-5415.1993.tb06693.x
Aloia, J. F., Vaswani, A., Ma, R. & Flaster, E. Aging in women—The four-compartment model of body composition. Metabolism 45, 43–48 (1996).
pubmed: 8544776 doi: 10.1016/S0026-0495(96)90198-5
Mcphee, J. S. et al. Biological sciences cite as. J. Gerontol. A Biol. Sci. Med. Sci. 73, 1287–1294 (2018).
pubmed: 29529132 pmcid: 6132117 doi: 10.1093/gerona/gly040
Tallis, J., Hill, C., James, R. S., Cox, V. M. & Seebacher, F. The effect of obesity on the contractile performance of isolated mouse soleus, EDL, and diaphragm muscles. J. Appl. Physiol. 122, 170–181 (2017).
pubmed: 27856719 doi: 10.1152/japplphysiol.00836.2016
Hill, C., James, R. S., Cox, V. M. & Tallis, J. Does dietary-induced obesity in old age impair the contractile performance of isolated mouse soleus, extensor digitorum longus and diaphragm skeletal muscles?. Nutrients 11, 505 (2019).
pmcid: 6470722 doi: 10.3390/nu11030505
Messa, G. A. M. et al. The impact of a high-fat diet in mice is dependent on duration and age, and differs between muscles. J. Exp. Biol. 223, 217117 (2020).
doi: 10.1242/jeb.217117
Okada, T., Mita, Y., Sakoda, H. & Nakazato, M. Impaired adaptation of energy intake induces severe obesity in aged mice on a high-fat diet. Physiol. Rep. 7, 1–9 (2019).
doi: 10.14814/phy2.13989
Hasek, B. E. et al. Dietary methionine restriction enhances metabolic flexibility and increases uncoupled respiration in both fed and fasted states. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R728–R739 (2010).
pubmed: 20538896 pmcid: 2944433 doi: 10.1152/ajpregu.00837.2009
Plaisance, E. P. et al. Dietary methionine restriction increases fat oxidation in obese adults with metabolic syndrome. J. Clin. Endocrinol. Metab. 96, E836–E840 (2011).
pubmed: 21346062 pmcid: 3085194 doi: 10.1210/jc.2010-2493
Ables, G. P., Perrone, C. E., Orentreich, D. & Orentreich, N. Methionine-restricted C57BL/6J mice are resistant to diet-induced obesity and insulin resistance but have low bone density. PLoS ONE 7, e51357 (2012).
pubmed: 23236485 pmcid: 3518083 doi: 10.1371/journal.pone.0051357
Bárcena, C. et al. Methionine restriction extends lifespan in progeroid mice and alters lipid and bile acid metabolism. Cell Rep. 24, 2392–2403 (2018).
pubmed: 30157432 pmcid: 6130051 doi: 10.1016/j.celrep.2018.07.089
Cooke, D. et al. Weight loss and concomitant adipose autophagy in methionine-restricted obese mice is not dependent on adiponectin or FGF21. Obesity 28, 1075–1085 (2020).
pubmed: 32348021 doi: 10.1002/oby.22763
Ferrannini, E. The theoretical bases of indirect calorimetry: A review. Metabolism 37, 287–301 (1988).
doi: 10.1016/0026-0495(88)90110-2 pubmed: 3278194
Simonson, D. C. & DeFronzo, R. A. Indirect calorimetry: Methodological and interpretative problems. Am. J. Physiol. Endocrinol. Metab. 258, E399 (1990).
doi: 10.1152/ajpendo.1990.258.3.E399
Hancock, C. R. et al. High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc. Natl. Acad. Sci. U.S.A. 105, 7815–7820 (2008).
pubmed: 18509063 pmcid: 2409421 doi: 10.1073/pnas.0802057105
Lark, D. S., Fisher-Wellman, K. H. & Neufer, P. D. High-fat load: Mechanism(s) of insulin resistance in skeletal muscle. Int. J. Obes. Suppl. 2, S31–S36 (2012).
pubmed: 26052434 pmcid: 4457392 doi: 10.1038/ijosup.2012.20
Eshima, H. et al. Long-term, but not short-term high-fat diet induces fiber composition changes and impaired contractile force in mouse fast-twitch skeletal muscle. Physiol. Rep. 5, e13250 (2017).
pubmed: 28408640 pmcid: 5392533 doi: 10.14814/phy2.13250
De Wilde, J. et al. An 8-Week high-fat diet induces obesity and insulin resistance with small changes in the muscle transcriptome of C57BL/6J mice. J. Nutrigenet. Nutrigenomics 2, 280–291 (2010).
Lees, E. K. et al. Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21. Aging Cell 13, 817–827 (2014).
pubmed: 24935677 pmcid: 4331744 doi: 10.1111/acel.12238
Luo, T. et al. Dietary methionine restriction improves glucose metabolism in the skeletal muscle of obese mice. Food Funct. 10, 2676–2690 (2019).
pubmed: 31025993 doi: 10.1039/C8FO02571A
Degens, H., Koşar, ŞN., Hopman, M. T. E. & De Haan, A. The time course of denervation-induced changes is similar in soleus muscles of adult and old rats. Appl. Physiol. Nutr. Metab. 33, 299–308 (2008).
pubmed: 18347685 doi: 10.1139/H07-189
Paudyal, A., Slevin, M., Maas, H. & Degens, H. Time course of denervation-induced changes in gastrocnemius muscles of adult and old rats. Exp. Gerontol. 106, 165–172 (2018).
pubmed: 29544909 doi: 10.1016/j.exger.2018.03.008
Ballak, S. B. et al. Blunted angiogenesis and hypertrophy are associated with increased fatigue resistance and unchanged aerobic capacity in old overloaded mouse muscle. Age (Omaha). https://doi.org/10.1007/s11357-016-9894-1 (2016).
doi: 10.1007/s11357-016-9894-1
Degens, H. & Alway, S. E. Skeletal muscle function and hypertrophy are diminished in old age. Muscle Nerve 27, 339–347 (2003).
pubmed: 12635121 doi: 10.1002/mus.10314
Plyley, M. J., Olmstead, B. J. & Noble, E. G. Time course of changes in capillarization in hypertrophied rat plantaris muscle. J. Appl. Physiol. 84, 902–907 (1998).
pubmed: 9480950 doi: 10.1152/jappl.1998.84.3.902
Longchamp, A. et al. Amino acid restriction triggers angiogenesis via GCN2/ATF4 regulation of VEGF and H2S production. Cell 173, 117–129 (2018).
pubmed: 29570992 pmcid: 5901681 doi: 10.1016/j.cell.2018.03.001
Das, A. et al. Impairment of an endothelial NAD+-H2S signaling network is a reversible cause of vascular aging. Cell 173, 74–89 (2018).
pubmed: 29570999 pmcid: 5884172 doi: 10.1016/j.cell.2018.02.008
Minderis, P., Fokin, A., Dirmontas, M. & Ratkevicius, A. Hypocaloric low-carbohydrate and low-fat diets with fixed protein lead to similar health outcomes in obese mice. Obesity 28, 1494–1502 (2020).
pubmed: 32639096 doi: 10.1002/oby.22872
Sjögren, K. et al. Body fat content can be predicted in vivo in mice using a modified dual-energy X-ray absorptiometry technique. J. Nutr. 131, 2963–2966 (2001).
pubmed: 11694626 doi: 10.1093/jn/131.11.2963
Gargiulo, S. et al. Evaluation of growth patterns and body composition in c57bl/6j mice using dual energy x-ray absorptiometry. Biomed. Res. Int. 2014, 1–11 (2014).
doi: 10.1155/2014/253067
Kvedaras, M., Minderis, P., Krusnauskas, R. & Ratkevicius, A. Effects of ten-week 30% caloric restriction on metabolic health and skeletal muscles of adult and old C57BL/6J mice. Mech. Ageing Dev. 190, 111320 (2020).
pubmed: 32735895 doi: 10.1016/j.mad.2020.111320
Den Hoed, M., Hesselink, M. K. C., Van Kranenburg, G. P. J. & Westerterp, K. R. Habitual physical activity in daily life correlates positively with markers for mitochondrial capacity. J. Appl. Physiol. 105, 561–568 (2008).
doi: 10.1152/japplphysiol.00091.2008

Auteurs

Anandini Swaminathan (A)

Institute of Sport Science and Innovations, Lithuanian Sports University, 44221, Kaunas, Lithuania. anandini.swaminathan@stud.lsu.lt.

Andrej Fokin (A)

Institute of Sport Science and Innovations, Lithuanian Sports University, 44221, Kaunas, Lithuania.

Tomas Venckūnas (T)

Institute of Sport Science and Innovations, Lithuanian Sports University, 44221, Kaunas, Lithuania.

Hans Degens (H)

Institute of Sport Science and Innovations, Lithuanian Sports University, 44221, Kaunas, Lithuania. H.degens@mmu.ac.uk.
Department of Life Sciences, Research Centre for Musculoskeletal Science and Sports Medicine, Manchester Metropolitan University, Manchester, UK. H.degens@mmu.ac.uk.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH