Methionine restriction plus overload improves skeletal muscle and metabolic health in old mice on a high fat diet.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
13 01 2021
13 01 2021
Historique:
received:
05
09
2020
accepted:
17
12
2020
entrez:
14
1
2021
pubmed:
15
1
2021
medline:
11
8
2021
Statut:
epublish
Résumé
Methionine restriction (MR) has been shown to reduce the age-induced inflammation. We examined the effect of MR (0.17% methionine, 10% kCal fat) and MR + high fat diet (HFD) (0.17% methionine, 45% kCal fat) on body mass, food intake, glucose tolerance, resting energy expenditure, hind limb muscle mass, denervation-induced atrophy and overload-induced hypertrophy in young and old mice. In old mice, MR and MR + HFD induced a decrease in body mass. Muscle mass per body mass was lower in old compared to young mice. MR restored some of the HFD-induced reduction in muscle oxidative capacity. The denervation-induced atrophy of the m. gastrocnemius was larger in animals on MR than on a control diet, irrespective of age. Old mice on MR had larger hypertrophy of m. plantaris. Irrespective of age, MR and MR + HFD had better glucose tolerance compared to the other groups. Young and old mice on MR + HFD had a higher resting VO
Identifiants
pubmed: 33441954
doi: 10.1038/s41598-021-81037-6
pii: 10.1038/s41598-021-81037-6
pmc: PMC7806605
doi:
Substances chimiques
Methionine
AE28F7PNPL
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1260Références
Rosenberg, I. H. Summary comments: Epidemiological and methodological problems in determining nutritional status of older persons. Am. J. Clin. Nutr. 50, 1231–1233 (1989).
doi: 10.1093/ajcn/50.5.1231
Garrow, J. S. Obesity and related diseases. Appetite. https://doi.org/10.1016/0195-6663(89)90017-2 (1988).
doi: 10.1016/0195-6663(89)90017-2
Kalinkovich, A. & Livshits, G. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res. Rev. 35, 200–221 (2017).
pubmed: 27702700
doi: 10.1016/j.arr.2016.09.008
Rolland, Y. et al. Sarcopenia: Its assessment, etiology, pathogenesis, consequences and future perspectives. J. Nutr. Health Aging 12, 433–450 (2008).
pubmed: 18615225
pmcid: 3988678
doi: 10.1007/BF02982704
Elia, M., Ritz, P. & Stubbs, R. J. Total energy expenditure in the elderly. Eur. J. Clin. Nutr. 54, S92–S103 (2000).
pubmed: 11041080
doi: 10.1038/sj.ejcn.1601030
Cooper, J. A. et al. Longitudinal change in energy expenditure and effects on energy requirements of the elderly. Nutr. J. https://doi.org/10.1186/1475-2891-12-73 (2013).
doi: 10.1186/1475-2891-12-73
pubmed: 23742706
pmcid: 3679966
Wang, J., Leung, K. S., Chow, S. K. H. & Cheung, W. H. Inflammation and age-associated skeletal muscle deterioration (sarcopaenia). J. Orthop. Transl. 10, 94–101 (2017).
Lang, C. H. Elevated plasma free fatty acids decrease basal protein synthesis, but not the anabolic effect of leucine, in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 291, E666 (2006).
pubmed: 16684854
doi: 10.1152/ajpendo.00065.2006
Guillet, C. et al. Changes in basal and insulin and amino acid response of whole body and skeletal muscle proteins in obese men. J. Clin. Endocrinol. Metab. 94, 3044–3050 (2009).
pubmed: 19470633
doi: 10.1210/jc.2008-2216
Nilsson, M. I. et al. Abnormal protein turnover and anabolic resistance to exercise in sarcopenic obesity. FASEB J. 27, 3905–3916 (2013).
pubmed: 23804240
doi: 10.1096/fj.12-224006
Mounier, R. et al. Antagonistic control of muscle cell size by AMPK and mTORC1. Cell Cycle 10, 2640–2646 (2011).
pubmed: 21799304
doi: 10.4161/cc.10.16.17102
Hilton, T. N., Tuttle, L. J., Bohnert, K. L., Mueller, M. J. & Sinacore, D. R. Excessive adipose tissue infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and peripheral neuropathy: Association with performance and function. Phys. Ther. 88, 1336–1344 (2008).
pubmed: 18801853
pmcid: 2579904
doi: 10.2522/ptj.20080079
Tardif, N. et al. Muscle ectopic fat deposition contributes to anabolic resistance in obese sarcopenic old rats through eIF2α activation. Aging Cell 13, 1001–1011 (2014).
pubmed: 25139155
pmcid: 4326920
doi: 10.1111/acel.12263
Cleasby, M. E., Jamieson, P. M. & Atherton, P. J. Insulin resistance and sarcopenia: Mechanistic links between common co-morbidities. J. Endocrinol. 229, R67–R81 (2016).
pubmed: 26931135
doi: 10.1530/JOE-15-0533
Orgeron, M. L. et al. The impact of dietary methionine restriction on biomarkers of metabolic health. Prog. Mol. Biol. Transl. Sci. 121, 351–376 (2014).
pubmed: 24373243
pmcid: 4049285
doi: 10.1016/B978-0-12-800101-1.00011-9
Harridge, S. D. R., Kryger, A. & Stensgaard, A. Knee extensor strength, activation, and size in very elderly people following strength training. Muscle Nerve 22, 831–839 (1999).
pubmed: 10398199
doi: 10.1002/(SICI)1097-4598(199907)22:7<831::AID-MUS4>3.0.CO;2-3
Faulks, S. C., Turner, N., Else, P. L. & Hulbert, A. J. Calorie restriction in mice: Effects on body composition, daily activity, metabolic rate, mitochondrial reactive oxygen species production, and membrane fatty acid composition. J. Gerontol. A Biol. Sci. Med. Sci. 61, 781–794 (2006).
pubmed: 16912094
doi: 10.1093/gerona/61.8.781
Schübel, R. et al. Effects of intermittent and continuous calorie restriction on body weight and metabolism over 50 wk: A randomized controlled trial. Am. J. Clin. Nutr. 108, 933–945 (2018).
pubmed: 30475957
pmcid: 6915821
doi: 10.1093/ajcn/nqy196
Orentreich, N., Matias, J. R., DeFelice, A. & Zimmerman, J. A. Low methionine ingestion by rats extends life span. J. Nutr. 123, 269–274 (1993).
pubmed: 8429371
Perrone, C. E., Malloy, V. L., Orentreich, D. S. & Orentreich, N. Metabolic adaptations to methionine restriction that benefit health and lifespan in rodents. Exp. Gerontol. 48, 654–660 (2013).
pubmed: 22819757
doi: 10.1016/j.exger.2012.07.005
Forney, L. A., Wanders, D., Stone, K. P., Pierse, A. & Gettys, T. W. Concentration-dependent linkage of dietary methionine restriction to the components of its metabolic phenotype. Obesity 25, 730–738 (2017).
pubmed: 28261952
doi: 10.1002/oby.21806
Wanders, D. et al. The components of age-dependent effects of dietary methionine restriction on energy balance in rats. Obesity. https://doi.org/10.1002/oby.22146 (2018).
doi: 10.1002/oby.22146
pubmed: 29504255
Morley, J. E. & Silver, A. J. Anorexia in the elderly. Neurobiol. Aging 9, 9–16 (1988).
pubmed: 2898107
doi: 10.1016/S0197-4580(88)80004-6
Silver, A. J., Guillen, C. P., Kahl, M. J. & Morley, J. E. Effect of aging on body fat. J. Am. Geriatr. Soc. 41, 211–213 (1993).
pubmed: 8440839
doi: 10.1111/j.1532-5415.1993.tb06693.x
Aloia, J. F., Vaswani, A., Ma, R. & Flaster, E. Aging in women—The four-compartment model of body composition. Metabolism 45, 43–48 (1996).
pubmed: 8544776
doi: 10.1016/S0026-0495(96)90198-5
Mcphee, J. S. et al. Biological sciences cite as. J. Gerontol. A Biol. Sci. Med. Sci. 73, 1287–1294 (2018).
pubmed: 29529132
pmcid: 6132117
doi: 10.1093/gerona/gly040
Tallis, J., Hill, C., James, R. S., Cox, V. M. & Seebacher, F. The effect of obesity on the contractile performance of isolated mouse soleus, EDL, and diaphragm muscles. J. Appl. Physiol. 122, 170–181 (2017).
pubmed: 27856719
doi: 10.1152/japplphysiol.00836.2016
Hill, C., James, R. S., Cox, V. M. & Tallis, J. Does dietary-induced obesity in old age impair the contractile performance of isolated mouse soleus, extensor digitorum longus and diaphragm skeletal muscles?. Nutrients 11, 505 (2019).
pmcid: 6470722
doi: 10.3390/nu11030505
Messa, G. A. M. et al. The impact of a high-fat diet in mice is dependent on duration and age, and differs between muscles. J. Exp. Biol. 223, 217117 (2020).
doi: 10.1242/jeb.217117
Okada, T., Mita, Y., Sakoda, H. & Nakazato, M. Impaired adaptation of energy intake induces severe obesity in aged mice on a high-fat diet. Physiol. Rep. 7, 1–9 (2019).
doi: 10.14814/phy2.13989
Hasek, B. E. et al. Dietary methionine restriction enhances metabolic flexibility and increases uncoupled respiration in both fed and fasted states. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R728–R739 (2010).
pubmed: 20538896
pmcid: 2944433
doi: 10.1152/ajpregu.00837.2009
Plaisance, E. P. et al. Dietary methionine restriction increases fat oxidation in obese adults with metabolic syndrome. J. Clin. Endocrinol. Metab. 96, E836–E840 (2011).
pubmed: 21346062
pmcid: 3085194
doi: 10.1210/jc.2010-2493
Ables, G. P., Perrone, C. E., Orentreich, D. & Orentreich, N. Methionine-restricted C57BL/6J mice are resistant to diet-induced obesity and insulin resistance but have low bone density. PLoS ONE 7, e51357 (2012).
pubmed: 23236485
pmcid: 3518083
doi: 10.1371/journal.pone.0051357
Bárcena, C. et al. Methionine restriction extends lifespan in progeroid mice and alters lipid and bile acid metabolism. Cell Rep. 24, 2392–2403 (2018).
pubmed: 30157432
pmcid: 6130051
doi: 10.1016/j.celrep.2018.07.089
Cooke, D. et al. Weight loss and concomitant adipose autophagy in methionine-restricted obese mice is not dependent on adiponectin or FGF21. Obesity 28, 1075–1085 (2020).
pubmed: 32348021
doi: 10.1002/oby.22763
Ferrannini, E. The theoretical bases of indirect calorimetry: A review. Metabolism 37, 287–301 (1988).
doi: 10.1016/0026-0495(88)90110-2
pubmed: 3278194
Simonson, D. C. & DeFronzo, R. A. Indirect calorimetry: Methodological and interpretative problems. Am. J. Physiol. Endocrinol. Metab. 258, E399 (1990).
doi: 10.1152/ajpendo.1990.258.3.E399
Hancock, C. R. et al. High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc. Natl. Acad. Sci. U.S.A. 105, 7815–7820 (2008).
pubmed: 18509063
pmcid: 2409421
doi: 10.1073/pnas.0802057105
Lark, D. S., Fisher-Wellman, K. H. & Neufer, P. D. High-fat load: Mechanism(s) of insulin resistance in skeletal muscle. Int. J. Obes. Suppl. 2, S31–S36 (2012).
pubmed: 26052434
pmcid: 4457392
doi: 10.1038/ijosup.2012.20
Eshima, H. et al. Long-term, but not short-term high-fat diet induces fiber composition changes and impaired contractile force in mouse fast-twitch skeletal muscle. Physiol. Rep. 5, e13250 (2017).
pubmed: 28408640
pmcid: 5392533
doi: 10.14814/phy2.13250
De Wilde, J. et al. An 8-Week high-fat diet induces obesity and insulin resistance with small changes in the muscle transcriptome of C57BL/6J mice. J. Nutrigenet. Nutrigenomics 2, 280–291 (2010).
Lees, E. K. et al. Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21. Aging Cell 13, 817–827 (2014).
pubmed: 24935677
pmcid: 4331744
doi: 10.1111/acel.12238
Luo, T. et al. Dietary methionine restriction improves glucose metabolism in the skeletal muscle of obese mice. Food Funct. 10, 2676–2690 (2019).
pubmed: 31025993
doi: 10.1039/C8FO02571A
Degens, H., Koşar, ŞN., Hopman, M. T. E. & De Haan, A. The time course of denervation-induced changes is similar in soleus muscles of adult and old rats. Appl. Physiol. Nutr. Metab. 33, 299–308 (2008).
pubmed: 18347685
doi: 10.1139/H07-189
Paudyal, A., Slevin, M., Maas, H. & Degens, H. Time course of denervation-induced changes in gastrocnemius muscles of adult and old rats. Exp. Gerontol. 106, 165–172 (2018).
pubmed: 29544909
doi: 10.1016/j.exger.2018.03.008
Ballak, S. B. et al. Blunted angiogenesis and hypertrophy are associated with increased fatigue resistance and unchanged aerobic capacity in old overloaded mouse muscle. Age (Omaha). https://doi.org/10.1007/s11357-016-9894-1 (2016).
doi: 10.1007/s11357-016-9894-1
Degens, H. & Alway, S. E. Skeletal muscle function and hypertrophy are diminished in old age. Muscle Nerve 27, 339–347 (2003).
pubmed: 12635121
doi: 10.1002/mus.10314
Plyley, M. J., Olmstead, B. J. & Noble, E. G. Time course of changes in capillarization in hypertrophied rat plantaris muscle. J. Appl. Physiol. 84, 902–907 (1998).
pubmed: 9480950
doi: 10.1152/jappl.1998.84.3.902
Longchamp, A. et al. Amino acid restriction triggers angiogenesis via GCN2/ATF4 regulation of VEGF and H2S production. Cell 173, 117–129 (2018).
pubmed: 29570992
pmcid: 5901681
doi: 10.1016/j.cell.2018.03.001
Das, A. et al. Impairment of an endothelial NAD+-H2S signaling network is a reversible cause of vascular aging. Cell 173, 74–89 (2018).
pubmed: 29570999
pmcid: 5884172
doi: 10.1016/j.cell.2018.02.008
Minderis, P., Fokin, A., Dirmontas, M. & Ratkevicius, A. Hypocaloric low-carbohydrate and low-fat diets with fixed protein lead to similar health outcomes in obese mice. Obesity 28, 1494–1502 (2020).
pubmed: 32639096
doi: 10.1002/oby.22872
Sjögren, K. et al. Body fat content can be predicted in vivo in mice using a modified dual-energy X-ray absorptiometry technique. J. Nutr. 131, 2963–2966 (2001).
pubmed: 11694626
doi: 10.1093/jn/131.11.2963
Gargiulo, S. et al. Evaluation of growth patterns and body composition in c57bl/6j mice using dual energy x-ray absorptiometry. Biomed. Res. Int. 2014, 1–11 (2014).
doi: 10.1155/2014/253067
Kvedaras, M., Minderis, P., Krusnauskas, R. & Ratkevicius, A. Effects of ten-week 30% caloric restriction on metabolic health and skeletal muscles of adult and old C57BL/6J mice. Mech. Ageing Dev. 190, 111320 (2020).
pubmed: 32735895
doi: 10.1016/j.mad.2020.111320
Den Hoed, M., Hesselink, M. K. C., Van Kranenburg, G. P. J. & Westerterp, K. R. Habitual physical activity in daily life correlates positively with markers for mitochondrial capacity. J. Appl. Physiol. 105, 561–568 (2008).
doi: 10.1152/japplphysiol.00091.2008