Multi-level remodelling of chromatin underlying activation of human T cells.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
12 01 2021
Historique:
received: 01 12 2019
accepted: 15 12 2020
entrez: 13 1 2021
pubmed: 14 1 2021
medline: 31 8 2021
Statut: epublish

Résumé

Remodelling of chromatin architecture is known to regulate gene expression and has been well characterized in cell lineage development but less so in response to cell perturbation. Activation of T cells, which triggers extensive changes in transcriptional programs, serves as an instructive model to elucidate how changes in chromatin architecture orchestrate gene expression in response to cell perturbation. To characterize coordinate changes at different levels of chromatin architecture, we analyzed chromatin accessibility, chromosome conformation and gene expression in activated human T cells. T cell activation was characterized by widespread changes in chromatin accessibility and interactions that were shared between activated CD4

Identifiants

pubmed: 33436846
doi: 10.1038/s41598-020-80165-9
pii: 10.1038/s41598-020-80165-9
pmc: PMC7804404
doi:

Substances chimiques

Chromatin 0
Nucleosomes 0
Transcription Factors 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

528

Références

Nat Genet. 2018 Aug;50(8):1140-1150
pubmed: 29988122
Nature. 2014 Mar 27;507(7493):455-461
pubmed: 24670763
Cell Rep. 2016 May 31;15(9):2038-49
pubmed: 27210764
Bioinformatics. 2017 Jul 1;33(13):2050-2052
pubmed: 28203714
Cell. 2016 Nov 17;167(5):1369-1384.e19
pubmed: 27863249
Cell Stem Cell. 2014 Jun 5;14(6):762-75
pubmed: 24905166
Cell. 2016 Mar 10;164(6):1110-1121
pubmed: 26967279
Biophys J. 2017 Feb 7;112(3):434-445
pubmed: 28153411
PLoS Genet. 2018 Jun 8;14(6):e1007431
pubmed: 29883495
Nucleus. 2018 Jan 1;9(1):20-32
pubmed: 29077530
Bioinformatics. 2010 Sep 1;26(17):2176-82
pubmed: 20610611
Science. 2009 Oct 9;326(5950):289-93
pubmed: 19815776
Nat Genet. 2019 Oct;51(10):1494-1505
pubmed: 31570894
BMC Bioinformatics. 2015 Aug 19;16:258
pubmed: 26283514
Genome Biol. 2017 Sep 4;18(1):165
pubmed: 28870212
Bioinformatics. 2014 Apr 1;30(7):923-30
pubmed: 24227677
F1000Res. 2017 Nov 28;6:2055
pubmed: 29333247
Cell. 2014 Dec 18;159(7):1665-80
pubmed: 25497547
Nucleic Acids Res. 2012 May;40(10):4288-97
pubmed: 22287627
Nat Genet. 2018 Feb;50(2):238-249
pubmed: 29335546
Cell. 2015 May 21;161(5):1012-1025
pubmed: 25959774
Nucleic Acids Res. 2015 Apr 20;43(7):e47
pubmed: 25605792
Nucleic Acids Res. 2016 Mar 18;44(5):e45
pubmed: 26578583
Nat Immunol. 2014 Apr;15(4):373-83
pubmed: 24584090
Nat Rev Immunol. 2005 Oct;5(10):749-59
pubmed: 16175180
Nat Genet. 2019 Oct;51(10):1486-1493
pubmed: 31548716
Genome Res. 2015 Nov;25(11):1757-70
pubmed: 26314830
Cold Spring Harb Symp Quant Biol. 2016;81:41-51
pubmed: 28424341
Am J Hum Genet. 2014 Apr 3;94(4):559-73
pubmed: 24702953
Ann Appl Stat. 2016 Jun;10(2):946-963
pubmed: 28367255
Nat Commun. 2018 Apr 13;9(1):1444
pubmed: 29654311
Nat Rev Immunol. 2011 Apr;11(4):239-50
pubmed: 21436836
Cell. 2019 Feb 7;176(4):897-912.e20
pubmed: 30686579
Genome Biol. 2010;11(3):R25
pubmed: 20196867
Bioinformatics. 2016 Sep 15;32(18):2847-9
pubmed: 27207943
F1000Res. 2016 Jun 20;5:1438
pubmed: 27508061
Nature. 2012 Sep 6;489(7414):57-74
pubmed: 22955616
Nature. 2012 Apr 11;485(7398):381-5
pubmed: 22495304
Bioinformatics. 2010 Jan 1;26(1):139-40
pubmed: 19910308
Nucleic Acids Res. 2019 May 7;47(8):e47
pubmed: 30783653
Nat Methods. 2013 Dec;10(12):1213-8
pubmed: 24097267
Genome Biol. 2008;9(9):R137
pubmed: 18798982
Genome Biol. 2014 Feb 03;15(2):R29
pubmed: 24485249
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Mol Cell. 2010 May 28;38(4):576-89
pubmed: 20513432
Nat Methods. 2012 Feb 28;9(3):215-6
pubmed: 22373907
Science. 2018 Oct 26;362(6413):
pubmed: 30361341
Cold Spring Harb Perspect Biol. 2015 Jan 05;7(1):a019364
pubmed: 25561719
Nature. 2015 Feb 19;518(7539):337-43
pubmed: 25363779
Nat Biotechnol. 2010 May;28(5):495-501
pubmed: 20436461
Bioinformatics. 2013 Aug 15;29(16):2046-8
pubmed: 23782611
Nature. 2003 May 8;423(6936):145-50
pubmed: 12736678
Stat Appl Genet Mol Biol. 2012 Oct 22;11(5):
pubmed: 23104842
Nature. 2012 Oct 25;490(7421):543-6
pubmed: 22992523
Science. 2012 Sep 7;337(6099):1190-5
pubmed: 22955828
J Immunol. 2014 Sep 1;193(5):2059-65
pubmed: 25128552
Nature. 2012 Apr 11;485(7398):376-80
pubmed: 22495300
Nat Rev Immunol. 2013 Jul;13(7):499-509
pubmed: 23787991
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
Immunity. 2016 Dec 20;45(6):1327-1340
pubmed: 27939672
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
Nature. 2015 Feb 19;518(7539):331-6
pubmed: 25693564
Bioinformatics. 2015 Aug 15;31(16):2601-6
pubmed: 25886982

Auteurs

Naiara G Bediaga (NG)

The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia.
Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia.

Hannah D Coughlan (HD)

The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia.
Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia.

Timothy M Johanson (TM)

The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia.
Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia.

Alexandra L Garnham (AL)

The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia.
Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia.

Gaetano Naselli (G)

The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia.

Jan Schröder (J)

The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia.
Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia.

Liam G Fearnley (LG)

The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia.
Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia.

Esther Bandala-Sanchez (E)

The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia.
Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia.

Rhys S Allan (RS)

The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia.
Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia.

Gordon K Smyth (GK)

The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia.
School of Mathematics and Statistics, The University of Melbourne, Parkville, 3010, Australia.

Leonard C Harrison (LC)

The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia. harrison@wehi.edu.au.
Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia. harrison@wehi.edu.au.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH