Tumor microenvironment: an evil nexus promoting aggressive head and neck squamous cell carcinoma and avenue for targeted therapy.
Journal
Signal transduction and targeted therapy
ISSN: 2059-3635
Titre abrégé: Signal Transduct Target Ther
Pays: England
ID NLM: 101676423
Informations de publication
Date de publication:
12 01 2021
12 01 2021
Historique:
received:
11
08
2020
accepted:
15
10
2020
revised:
02
10
2020
entrez:
13
1
2021
pubmed:
14
1
2021
medline:
5
3
2022
Statut:
epublish
Résumé
Head and neck squamous cell carcinoma (HNSCC) is a very aggressive disease with a poor prognosis for advanced-stage tumors. Recent clinical, genomic, and cellular studies have revealed the highly heterogeneous and immunosuppressive nature of HNSCC. Despite significant advances in multimodal therapeutic interventions, failure to cure and recurrence are common and account for most deaths. It is becoming increasingly apparent that tumor microenvironment (TME) plays a critical role in HNSCC tumorigenesis, promotes the evolution of aggressive tumors and resistance to therapy, and thereby adversely affects the prognosis. A complete understanding of the TME factors, together with the highly complex tumor-stromal interactions, can lead to new therapeutic interventions in HNSCC. Interestingly, different molecular and immune landscapes between HPV
Identifiants
pubmed: 33436555
doi: 10.1038/s41392-020-00419-w
pii: 10.1038/s41392-020-00419-w
pmc: PMC7804459
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
12Commentaires et corrections
Type : ErratumIn
Références
Fitzmaurice, C. et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol. 3, 524–548 (2017).
pubmed: 27918777
Ghantous, Y. & Abu Elnaaj, I. Global incidence and risk factors of oral cancer. Harefuah 156, 645–649 (2017).
pubmed: 29072384
Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 68, 394–424 (2018).
Noggle, F. T. Jr., Clark, C. R. & DeRuiter, J. Liquid chromatographic and mass spectral analysis of the anabolic 17-hydroxy steroid esters. J. Chromatographic Sci. 28, 263–268 (1990).
Leemans, C. R., Braakhuis, B. J. & Brakenhoff, R. H. The molecular biology of head and neck cancer. Nat. Rev. Cancer 11, 9–22, https://doi.org/10.1038/nrc2982 (2011).
doi: 10.1038/nrc2982
pubmed: 21160525
Blot, W. J. et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res. 48, 3282–3287 (1988).
pubmed: 3365707
Chaturvedi, A. K. et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J. Clin. Oncol. 29, 4294–4301 (2011).
pubmed: 21969503
pmcid: 3221528
Leemans, C. R., Snijders, P. J. F. & Brakenhoff, R. H. The molecular landscape of head and neck cancer. Nat. Rev. Cancer 18, 269–282 (2018).
pubmed: 29497144
Fakhry, C. & Gillison, M. L. Clinical implications of human papillomavirus in head and neck cancers. J. Clin. Oncol. 24, 2606–2611 (2006).
pubmed: 16763272
pmcid: 4696042
Hashibe, M. et al. Interaction between tobacco and alcohol use and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. Cancer Epidemiol., Biomark. Prev. 18, 541–550 (2009).
Maier, H., Dietz, A., Gewelke, U., Heller, W. D. & Weidauer, H. Tobacco and alcohol and the risk of head and neck cancer. Clin. Investig. 70, 320–327 (1992).
pubmed: 1521046
Sturgis, E. M. & Wei, Q. Genetic susceptibility-molecular epidemiology of head and neck cancer. Curr. Opin. Oncol. 14, 310–317 (2002).
pubmed: 11981277
Preston-Martin, S., Thomas, D. C., White, S. C. & Cohen, D. Prior exposure to medical and dental x-rays related to tumors of the parotid gland. J. Natl. Cancer Inst. 80, 943–949 (1988).
pubmed: 3398070
Yu, M. C. & Yuan, J. M. Epidemiology of nasopharyngeal carcinoma. Semin. Cancer Biol. 12, 421–429 (2002).
pubmed: 12450728
Boffetta, P. et al. Occupation and larynx and hypopharynx cancer: an international case-control study in France, Italy, Spain, and Switzerland. Cancer Causes Control. 14, 203–212 (2003).
pubmed: 12814199
Guha, N. et al. Oral health and risk of squamous cell carcinoma of the head and neck and esophagus: results of two multicentric case-control studies. Am. J. Epidemiol. 166, 1159–1173 (2007).
pubmed: 17761691
Chien, Y. C. et al. Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N. Engl. J. Med. 345, 1877–1882 (2001).
pubmed: 11756578
Martin, L., Zoubir, M. & Le Tourneau, C. Recurrence of upper aerodigestive tract tumors. Bull. du Cancer 101, 511–520 (2014).
Wu, T. & Dai, Y. Tumor microenvironment and therapeutic response. Cancer Lett. 387, 61–68 (2017).
pubmed: 26845449
Soysal, S. D., Tzankov, A. & Muenst, S. E. Role of the tumor microenvironment in breast cancer. Pathobiology: J. Immunopathol., Mol. Cell. Biol. 82, 142–152 (2015).
Denton, A. E., Roberts, E. W. & Fearon, D. T. Stromal cells in the tumor microenvironment. Adv. Exp. Med. Biol. 1060, 99–114 (2018).
pubmed: 30155624
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
Giancotti, F. G. Deregulation of cell signaling in cancer. FEBS Lett. 588, 2558–2570 (2014).
pubmed: 24561200
pmcid: 4111980
Arneth, B. Tumor microenvironment. Medicina (Kaunas, Lithuania) 56, https://doi.org/10.3390/medicina56010015 (2019).
Cristina, V., Herrera-Gómez, R. G., Szturz, P., Espeli, V. & Siano, M. Immunotherapies and future combination strategies for head and neck squamous cell carcinoma. Int. J. Mol. Sci. 20, https://doi.org/10.3390/ijms20215399 (2019).
Curry, J. M. et al. Tumor microenvironment in head and neck squamous cell carcinoma. Semin. Oncol. 41, 217–234 (2014).
pubmed: 24787294
Peltanova, B., Raudenska, M. & Masarik, M. Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review. Mol. Cancer 18, 63 (2019).
pubmed: 30927923
pmcid: 6441173
Chaudhary, S. et al. Immunometabolic alterations by HPV infection: new dimensions to head and neck cancer disparity. J. Natl. Cancer Inst. 111, 233–244 (2019).
pubmed: 30615137
pmcid: 6410958
Dobrenis, K., Gauthier, L. R., Barroca, V. & Magnon, C. Granulocyte colony-stimulating factor off-target effect on nerve outgrowth promotes prostate cancer development. Int. J. Cancer 136, 982–988 (2015).
pubmed: 24975135
Hu, P. et al. Intratumoral polymorphonuclear granulocyte is associated with poor prognosis in squamous esophageal cancer by promoting epithelial-mesenchymal transition. Future Oncol. 11, 771–783 (2015).
pubmed: 25757681
Oft, M., Heider, K. H. & Beug, H. TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Curr. Biol. 8, 1243–1252 (1998).
pubmed: 9822576
Cheng, L. et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153, 139–152 (2013).
pubmed: 23540695
pmcid: 3638263
Egeblad, M., Nakasone, E. S. & Werb, Z. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18, 884–901 (2010).
pubmed: 20627072
pmcid: 2905377
Quezada, S. A., Peggs, K. S., Simpson, T. R. & Allison, J. P. Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication. Immunol. Rev. 241, 104–118 (2011).
pubmed: 21488893
pmcid: 3727276
Chen, F. et al. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med. 13, 45 (2015).
pubmed: 25857315
pmcid: 4350882
Fang, J. et al. Prognostic significance of tumor infiltrating immune cells in oral squamous cell carcinoma. BMC Cancer 17, 375 (2017).
pubmed: 28549420
pmcid: 5446725
Nguyen, N. et al. Tumor infiltrating lymphocytes and survival in patients with head and neck squamous cell carcinoma. Head Neck 38, 1074–1084 (2016).
pubmed: 26879675
pmcid: 4900934
Bonomi, M., Patsias, A., Posner, M. & Sikora, A. The role of inflammation in head and neck cancer. Adv. Exp. Med. Biol. 816, 107–127 (2014).
pubmed: 24818721
Johnson, S. D., De Costa, A. M. & Young, M. R. Effect of the premalignant and tumor microenvironment on immune cell cytokine production in head and neck cancer. Cancers 6, 756–770 (2014).
pubmed: 24698959
pmcid: 4074802
Chaudhary, M. et al. Comparison of myofibroblasts expression in oral squamous cell carcinoma, verrucous carcinoma, high risk epithelial dysplasia, low risk epithelial dysplasia and normal oral mucosa. Head Neck Pathol. 6, 305–313 (2012).
pubmed: 22392407
pmcid: 3422591
Kapse, S. C. et al. Quantitative assessment of myofibroblast in severe dysplasia, microinvasion and oral squamous cell carcinoma: an immunohistochemical study. J. Contemp. Dent. Pract. 14, 34–38 (2013).
pubmed: 23579889
De Costa, A. M., Schuyler, C. A., Walker, D. D. & Young, M. R. Characterization of the evolution of immune phenotype during the development and progression of squamous cell carcinoma of the head and neck. Cancer Immunol., immunothe. 61, 927–939 (2012).
Juretić, M. et al. Salivary levels of TNF-α and IL-6 in patients with oral premalignant and malignant lesions. Folia Biologica 59, 99–102 (2013).
pubmed: 23746176
Mehanna, H. et al. Prevalence of human papillomavirus in oropharyngeal and nonoropharyngeal head and neck cancer-systematic review and meta-analysis of trends by time and region. Head Neck 35, 747–755 (2013).
pubmed: 22267298
Carpén, T. et al. Presenting symptoms and clinical findings in HPV-positive and HPV-negative oropharyngeal cancer patients. Acta oto-laryngologica 138, 513–518 (2018).
pubmed: 29161981
Näsman, A. et al. Incidence of human papillomavirus (HPV) positive tonsillar carcinoma in Stockholm, Sweden: an epidemic of viral-induced carcinoma? Int. J. Cancer 125, 362–366 (2009).
pubmed: 19330833
Panwar, A., Batra, R., Lydiatt, W. M. & Ganti, A. K. Human papilloma virus positive oropharyngeal squamous cell carcinoma: a growing epidemic. Cancer Treat. Rev. 40, 215–219 (2014).
pubmed: 24080155
Pytynia, K. B., Dahlstrom, K. R. & Sturgis, E. M. Epidemiology of HPV-associated oropharyngeal cancer. Oral. Oncol. 50, 380–386 (2014).
pubmed: 24461628
pmcid: 4444216
Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517, 576–582 (2015).
Seiwert, T. Y. et al. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin. Cancer Res. 21, 632–641 (2015).
pubmed: 25056374
Gunduz, M., Gunduz, E., Tamagawa, S., Enomoto, K. & Hotomi, M. Identification and chemoresistance of cancer stem cells in HPV-negative oropharyngeal cancer. Oncol. Lett. 19, 965–971 (2020).
pubmed: 31897209
Weinberger, P. M. et al. Molecular classification identifies a subset of human papillomavirus-associated oropharyngeal cancers with favorable prognosis. J. Clin. Oncol. 24, 736–747 (2006).
pubmed: 16401683
Mandal, R. et al. The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight 1 (2016).
Koneva, L. A. et al. HPV integration in HNSCC correlates with survival outcomes, immune response signatures, and candidate drivers. Mol. Cancer Res. 16, 90–102 (2018).
pubmed: 28928286
Krupar, R. et al. Immunologic and metabolic characteristics of HPV-negative and HPV-positive head and neck squamous cell carcinomas are strikingly different. Virchows Arch. 465, 299–312 (2014).
pubmed: 25027580
Allen, C. T., Clavijo, P. E., Van Waes, C. & Chen, Z. Anti-tumor immunity in head and neck cancer: understanding the evidence, how tumors escape and immunotherapeutic approaches. Cancers 7, 2397–2414 (2015).
pubmed: 26690220
pmcid: 4695900
Mandal, R. et al. The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight 1, e89829 (2016).
pubmed: 27777979
pmcid: 5070962
de Ruiter, E. J., Ooft, M. L., Devriese, L. A. & Willems, S. M. The prognostic role of tumor infiltrating T-lymphocytes in squamous cell carcinoma of the head and neck: a systematic review and meta-analysis. Oncoimmunology 6, e1356148 (2017).
pubmed: 29147608
pmcid: 5674970
Gameiro, S. F. et al. Treatment-naïve HPV+ head and neck cancers display a T-cell-inflamed phenotype distinct from their HPV- counterparts that has implications for immunotherapy. Oncoimmunology 7, e1498439 (2018).
pubmed: 30288365
pmcid: 6169583
Horton, J. D., Knochelmann, H. M., Day, T. A., Paulos, C. M. & Neskey, D. M. Immune evasion by head and neck cancer: foundations for combination therapy. Trends Cancer 5, 208–232 (2019).
pubmed: 30961829
pmcid: 7304339
Kindt, N. et al. High stromal Foxp3-positive T cell number combined to tumor stage improved prognosis in head and neck squamous cell carcinoma. Oral. Oncol. 67, 183–191 (2017).
pubmed: 28351575
Punt, S. et al. A beneficial tumor microenvironment in oropharyngeal squamous cell carcinoma is characterized by a high T cell and low IL-17(+) cell frequency. Cancer Immunol., immunotherapy 65, 393–403 (2016).
Seminerio, I. et al. Infiltration of FoxP3+ regulatory T cells is a strong and independent prognostic factor in head and neck squamous cell carcinoma. Cancers 11, 227 (2019).
Oguejiofor, K. et al. Stromal infiltration of CD8 T cells is associated with improved clinical outcome in HPV-positive oropharyngeal squamous carcinoma. Br. J. Cancer 113, 886–893 (2015).
pubmed: 26313665
pmcid: 4578081
van Kempen, P. M. et al. Oropharyngeal squamous cell carcinomas differentially express granzyme inhibitors. Cancer Immunol., Immunother. 65, 575–585 (2016).
Heusinkveld, M. et al. Systemic and local human papillomavirus 16-specific T-cell immunity in patients with head and neck cancer. Int. J. Cancer 131, E74–E85 (2012).
pubmed: 22020783
Albers, A. et al. Antitumor activity of human papillomavirus type 16 E7–specific T cells against virally infected squamous cell carcinoma of the head and neck. Cancer Res. 65, 11146–11155 (2005).
pubmed: 16322265
Masterson, L. et al. CD8+ T cell response to human papillomavirus 16 E7 is able to predict survival outcome in oropharyngeal cancer. Eur. J. Cancer 67, 141–151 (2016).
pubmed: 27669501
Yin, W., Duluc, D., Joo, H. & Oh, S. Dendritic cell targeting vaccine for HPV-associated cancer. Cancer Cell Microenviron. 3 (2016).
Partlová, S. et al. Distinct patterns of intratumoral immune cell infiltrates in patients with HPV-associated compared to non-virally induced head and neck squamous cell carcinoma. Oncoimmunology 4, e965570 (2015).
pubmed: 25949860
pmcid: 4368144
Lechien, J. R. et al. HPV Involvement in the tumor microenvironment and immune treatment in head and neck squamous cell carcinomas. Cancers 12, https://doi.org/10.3390/cancers12051060 (2020).
Costa, N. L. et al. Tumor-associated macrophages and the profile of inflammatory cytokines in oral squamous cell carcinoma. Oral Oncol. 49, 216–223 (2013).
pubmed: 23089461
Wolf, G. T. et al. Tumor infiltrating lymphocytes (TIL) and prognosis in oral cavity squamous carcinoma: a preliminary study. Oral Oncol. 51, 90–95 (2015).
pubmed: 25283344
Chen, X. et al. Immunological network analysis in HPV associated head and neck squamous cancer and implications for disease prognosis. Mol. Immunol. 96, 28–36 (2018).
pubmed: 29477933
Seminerio, I. et al. High infiltration of CD68+ macrophages is associated with poor prognoses of head and neck squamous cell carcinoma patients and is influenced by human papillomavirus. Oncotarget 9, 11046–11059 (2018).
pubmed: 29541395
pmcid: 5834277
Wagner, S. et al. CD56‐positive lymphocyte infiltration in relation to human papillomavirus association and prognostic significance in oropharyngeal squamous cell carcinoma. Int. J. Cancer 138, 2263–2273 (2016).
pubmed: 26662627
Kindt, N. et al. Langerhans cell number is a strong and independent prognostic factor for head and neck squamous cell carcinomas. Oral Oncol. 62, 1–10 (2016).
pubmed: 27865360
Guess, J. C. & McCance, D. J. Decreased migration of Langerhans precursor-like cells in response to human keratinocytes expressing human papillomavirus type 16 E6/E7 is related to reduced macrophage inflammatory protein-3alpha production. J. Virol. 79, 14852–14862 (2005).
pubmed: 16282485
pmcid: 1287574
Wang, H. F. et al. The double-edged sword-how human papillomaviruses interact with immunity in head and neck cancer. Front. Immunol. 10, 653 (2019).
pubmed: 31001266
pmcid: 6454067
Wellenstein, M. D. & de Visser, K. E. Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity 48, 399–416 (2018).
pubmed: 29562192
Kanodia, S., Fahey, L. M. & Kast, W. M. Mechanisms used by human papillomaviruses to escape the host immune response. Curr. Cancer Drug Targets 7, 79–89 (2007).
pubmed: 17305480
Patel, D., Huang, S. M., Baglia, L. A. & McCance, D. J. The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J. 18, 5061–5072 (1999).
pubmed: 1171577
pmcid: 1171577
Zhou, C., Tuong, Z. K. & Frazer, I. H. Papillomavirus immune evasion strategies target the infected cell and the local immune system. Front. Oncol. 9, 682 (2019).
pubmed: 31428574
pmcid: 6688195
Matthews, K. et al. Depletion of Langerhans cells in human papillomavirus type 16-infected skin is associated with E6-mediated down regulation of E-cadherin. J. Virol. 77, 8378–8385 (2003).
pubmed: 12857907
pmcid: 165258
Miura, S. et al. CD1d, a sentinel molecule bridging innate and adaptive immunity, is downregulated by the human papillomavirus (HPV) E5 protein: a possible mechanism for immune evasion by HPV. J. Virol. 84, 11614–11623 (2010).
pubmed: 20810727
pmcid: 2977886
Outh-Gauer, S. et al. The microenvironment of head and neck cancers: papillomavirus involvement and potential impact of immunomodulatory treatments. Head Neck Pathol. 14, 330–340 (2020).
pubmed: 32124416
Bernadt, C. T. & Collins, B. T. Fine-needle aspiration biopsy of HPV-related squamous cell carcinoma of the head and neck: current ancillary testing methods for determining HPV status. Diagnostic Cytopathol. 45, 221–229 (2017).
Syrjänen, S. HPV infections and tonsillar carcinoma. J. Clin. Pathol. 57, 449–455 (2004).
pubmed: 15113849
pmcid: 1770289
Sun, Y. et al. Serum antibodies to human papillomavirus 16 proteins in women from Brazil with invasive cervical carcinoma. Cancer Epidemiol., Biomark. Prev. 8, 935–940 (1999).
Olsen, A. O., Dillner, J., Gjøen, K. & Magnus, P. Seropositivity against HPV 16 capsids: a better marker of past sexual behaviour than presence of HPV DNA. Genitourin. Med. 73, 131–135 (1997).
pubmed: 9215097
pmcid: 1195789
Ho, G. Y., Studentsov, Y. Y., Bierman, R. & Burk, R. D. Natural history of human papillomavirus type 16 virus-like particle antibodies in young women. Cancer Epidemiol., Biomark. Prev. 13, 110–116 (2004).
Gillison, M. L. et al. Tobacco smoking and increased risk of death and progression for patients with p16-positive and p16-negative oropharyngeal cancer. J. Clin. Oncol. 30, 2102–2111 (2012).
pubmed: 22565003
pmcid: 3397696
Pagès, F. et al. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J. Clin. Oncol. 27, 5944–5951 (2009).
pubmed: 19858404
Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).
pubmed: 6549688
pmcid: 6549688
Goodman, A. M. et al. Prevalence of PDL1 amplification and preliminary response to immune checkpoint blockade in solid tumors. JAMA Oncol. 4, 1237–1244 (2018).
pubmed: 29902298
pmcid: 6139049
Hanna, G. J. et al. Frameshift events predict anti-PD-1/L1 response in head and neck cancer. JCI Insight 3, https://doi.org/10.1172/jci.insight.98811 (2018).
Seiwert, T. Y. et al. Abstract LB-339: biomarkers predictive of response to pembrolizumab in head and neck cancer (HNSCC). J. Cancer Res. 78, LB-339–LB-339 (2018).
Kalyankrishna, S. & Grandis, J. R. Epidermal growth factor receptor biology in head and neck cancer. J. Clin. Oncol. 24, 2666–2672 (2006).
pubmed: 16763281
Zimmermann, M., Zouhair, A., Azria, D. & Ozsahin, M. The epidermal growth factor receptor (EGFR) in head and neck cancer: its role and treatment implications. Radiat. Oncol. 1, 11 (2006).
pubmed: 16722544
pmcid: 1524965
Diepenbruck, M. & Christofori, G. Epithelial-mesenchymal transition (EMT) and metastasis: yes, no, maybe? Curr. Opin. Cell Biol. 43, 7–13 (2016).
pubmed: 27371787
Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).
Yokoyama, K. et al. Reverse correlation of E-cadherin and snail expression in oral squamous cell carcinoma cells in vitro. Oral Oncol. 37, 65–71 (2001).
pubmed: 11120485
Gao, L. et al. CCL2/EGF positive feedback loop between cancer cells and macrophages promotes cell migration and invasion in head and neck squamous cell carcinoma. Oncotarget 7, 87037–87051 (2016).
pubmed: 27888616
pmcid: 5349969
Finke, J. et al. MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. Int. Immunopharmacol. 11, 856–861 (2011).
pubmed: 21315783
Toh, B. et al. Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS Biol. 9, e1001162 (2011).
pubmed: 21980263
pmcid: 3181226
Dohadwala, M. et al. The role of ZEB1 in the inflammation-induced promotion of EMT in HNSCC. Otolaryngol.-Head Neck Surg. 142, 753–759 (2010).
pubmed: 20416468
St John, M. A. et al. Proinflammatory mediators upregulate snail in head and neck squamous cell carcinoma. Clin. Cancer Res. 15, 6018–6027 (2009).
Oliveira-Neto, H. H. et al. Involvement of CXCL12 and CXCR4 in lymph node metastases and development of oral squamous cell carcinomas. Tumour Biol.: J. Int. Soc. Oncodev. Biol. Med. 29, 262–271 (2008).
Schmitz, S., Bindea, G., Albu, R. I., Mlecnik, B. & Machiels, J. P. Cetuximab promotes epithelial to mesenchymal transition and cancer associated fibroblasts in patients with head and neck cancer. Oncotarget 6, 34288–34299 (2015).
pubmed: 26437222
pmcid: 4741452
Onoue, T. et al. Epithelial-mesenchymal transition induced by the stromal cell-derived factor-1/CXCR4 system in oral squamous cell carcinoma cells. Int. J. Oncol. 29, 1133–1138 (2006).
pubmed: 17016644
Yoon, Y. et al. CXC chemokine receptor-4 antagonist blocks both growth of primary tumor and metastasis of head and neck cancer in xenograft mouse models. Cancer Res. 67, 7518–7524 (2007).
pubmed: 17671223
Koontongkaew, S., Amornphimoltham, P., Monthanpisut, P., Saensuk, T. & Leelakriangsak, M. Fibroblasts and extracellular matrix differently modulate MMP activation by primary and metastatic head and neck cancer cells. Med. Oncol. 29, 690–703 (2012).
pubmed: 21380786
Jung, D. W. et al. Tumor-stromal crosstalk in invasion of oral squamous cell carcinoma: a pivotal role of CCL7. Int. J. Cancer 127, 332–344 (2010).
pubmed: 19937793
Yu, C. et al. TGF-β1 mediates epithelial to mesenchymal transition via the TGF-β/Smad pathway in squamous cell carcinoma of the head and neck. Oncol. Rep. 25, 1581–1587 (2011).
pubmed: 21479366
Hinsley, E. E., Kumar, S., Hunter, K. D., Whawell, S. A. & Lambert, D. W. Endothelin-1 stimulates oral fibroblasts to promote oral cancer invasion. Life Sci. 91, 557–561 (2012).
pubmed: 22525370
Smith, A., Teknos, T. N. & Pan, Q. Epithelial to mesenchymal transition in head and neck squamous cell carcinoma. Oral Oncol. 49, 287–292 (2013).
pubmed: 23182398
Ishida, T., Hijioka, H., Kume, K., Miyawaki, A. & Nakamura, N. Notch signaling induces EMT in OSCC cell lines in a hypoxic environment. Oncol. Lett. 6, 1201–1206 (2013).
pubmed: 24179495
pmcid: 3813785
Zhu, G. et al. Hypoxia promotes migration/invasion and glycolysis in head and neck squamous cell carcinoma via an HIF-1α-MTDH loop. Oncol. Rep. 38, 2893–2900 (2017).
pubmed: 28901527
Yang, M. H. et al. Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat. Cell Biol. 12, 982–992 (2010).
pubmed: 20818389
Frisch, S. M. & Francis, H. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124, 619–626 (1994).
pubmed: 8106557
Frisch, S. M. & Screaton, R. A. Anoikis mechanisms. Curr. Opin. Cell Biol. 13, 555–562 (2001).
pubmed: 11544023
Kupferman, M. E. et al. Molecular analysis of anoikis resistance in oral cavity squamous cell carcinoma. Oral Oncol. 43, 440–454 (2007).
pubmed: 16978912
Liu, X. W., Bernardo, M. M., Fridman, R. & Kim, H. R. Tissue inhibitor of metalloproteinase-1 protects human breast epithelial cells against intrinsic apoptotic cell death via the focal adhesion kinase/phosphatidylinositol 3-kinase and MAPK signaling pathway. J. Biol. Chem. 278, 40364–40372 (2003).
pubmed: 12904305
Cabral, A. et al. Structural organization and regulation of the small proline-rich family of cornified envelope precursors suggest a role in adaptive barrier function. J. Biol. Chem. 276, 19231–19237 (2001).
pubmed: 11279051
Moriwaki, K. et al. TRKB tyrosine kinase receptor is a potential therapeutic target for poorly differentiated oral squamous cell carcinoma. Oncotarget 9, 25225–25243 (2018).
pubmed: 29861866
pmcid: 5982746
Ganjre, A., Sarode, G. S., Sarode, S. C. & Patil, S. Oral squamous cell carcinoma and anoikis: a brief review on recent advances. J. Int. Oral Health 8, 1043 (2016).
Walsh, M. F., Thamilselvan, V., Grotelueschen, R., Farhana, L. & Basson, M. Absence of adhesion triggers differential FAK and SAPKp38 signals in SW620 human colon cancer cells that may inhibit adhesiveness and lead to cell death. Cell Physiol. Biochem. 13, 135–146 (2003).
pubmed: 12876384
Knowles, L. M. et al. HGF and c-Met participate in paracrine tumorigenic pathways in head and neck squamous cell cancer. Clin. Cancer Res. 15, 3740–3750 (2009).
pubmed: 19470725
pmcid: 3159511
Zeng, Q. et al. Hepatocyte growth factor inhibits anoikis in head and neck squamous cell carcinoma cells by activation of ERK and Akt signaling independent of NFkappa B. J. Biol. Chem. 277, 25203–25208 (2002).
pubmed: 11994287
Neiva, K. G. et al. Cross talk initiated by endothelial cells enhances migration and inhibits anoikis of squamous cell carcinoma cells through STAT3/Akt/ERK signaling. Neoplasia 11, 583–593 (2009).
pubmed: 19484147
pmcid: 2685447
Campos, M. S., Neiva, K. G., Meyers, K. A., Krishnamurthy, S. & Nör, J. E. Endothelial derived factors inhibit anoikis of head and neck cancer stem cells. Oral Oncol. 48, 26–32 (2012).
pubmed: 22014666
Liao, Y. H. et al. Epidermal growth factor-induced ANGPTL4 enhances anoikis resistance and tumour metastasis in head and neck squamous cell carcinoma. Oncogene 36, 2228–2242 (2017).
pubmed: 27797381
Lian, L. et al. Inhibition of MCF-7 breast cancer cell-induced platelet aggregation using a combination of antiplatelet drugs. Oncol. Lett. 5, 675–680 (2013).
pubmed: 23420392
Dey, K. K. et al. Mechanistic attributes of S100A7 (psoriasin) in resistance of anoikis resulting tumor progression in squamous cell carcinoma of the oral cavity. Cancer Cell Int. 15, 74 (2015).
pubmed: 26225121
pmcid: 4518584
Zhang, Y., Lu, H., Dazin, P. & Kapila, Y. Squamous cell carcinoma cell aggregates escape suspension-induced, p53-mediated anoikis: fibronectin and integrin alphav mediate survival signals through focal adhesion kinase. J. Biol. Chem. 279, 48342–48349 (2004).
pubmed: 15331608
Bozzo, C. et al. Activation of caspase-8 triggers anoikis in human neuroblastoma cells. Neurosci. Res. 56, 145–153 (2006).
pubmed: 16872704
Bresnick, A. R., Weber, D. J. & Zimmer, D. B. S100 proteins in cancer. Nat. Rev. Cancer 15, 96–109 (2015).
pubmed: 25614008
pmcid: 4369764
Petruzzelli, G. J. Tumor angiogenesis. Head neck 18, 283–291 (1996).
pubmed: 8860771
Kaneko, T. et al. Bcl-2 orchestrates a cross-talk between endothelial and tumor cells that promotes tumor growth. Cancer Res. 67, 9685–9693 (2007).
pubmed: 17942898
Karl, E. et al. Unidirectional crosstalk between Bcl-xL and Bcl-2 enhances the angiogenic phenotype of endothelial cells. Cell Death Differ. 14, 1657–1666 (2007).
pubmed: 17572663
Liang, Z. et al. CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway. Biochem. Biophys. Res. Commun. 359, 716–722 (2007).
pubmed: 17559806
pmcid: 1986788
Lu, S. L. et al. Loss of transforming growth factor-beta type II receptor promotes metastatic head-and-neck squamous cell carcinoma. Genes Dev. 20, 1331–1342 (2006).
pubmed: 16702406
pmcid: 1472907
Yang, J. G. et al. Lymphotoxin-α promotes tumor angiogenesis in HNSCC by modulating glycolysis in a PFKFB3-dependent manner. Int. J. Cancer 145, 1358–1370 (2019).
pubmed: 30785217
Sato, S. et al. EPHB2 carried on small extracellular vesicles induces tumor angiogenesis via activation of ephrin reverse signaling. JCI Insight 4, https://doi.org/10.1172/jci.insight.132447 (2019).
Ludwig, N., Yerneni, S. S., Razzo, B. M. & Whiteside, T. L. Exosomes from HNSCC promote angiogenesis through reprogramming of endothelial cells. Mol. Cancer Res. 16, 1798–1808 (2018).
pubmed: 30042174
Andrade, S. P., Hart, I. R. & Piper, P. J. Inhibitors of nitric oxide synthase selectively reduce flow in tumor-associated neovasculature. Br. J. Pharmacol. 107, 1092–1095 (1992).
pubmed: 1281718
pmcid: 1907927
Burnet, F. M. The concept of immunological surveillance. Prog. Exp. tumor Res. 13, 1–27 (1970).
pubmed: 4921480
Lorusso, G. & Rüegg, C. The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem. Cell Biol. 130, 1091–1103 (2008).
pubmed: 18987874
Abd Hamid, M. et al. Enriched HLA-E and CD94/NKG2A interaction limits antitumor CD8(+) tumor-infiltrating T lymphocyte responses. Cancer Immunol. Res. 7, 1293–1306 (2019).
pubmed: 31213473
Merlano, M. C., Denaro, N. & Garrone, O. Immune escape mechanisms in head and neck squamous cell carcinoma and implication for new immunotherapy approach. Curr. Opin. Oncol. 32, 203–209 (2020).
pubmed: 32195680
Baruah, P. et al. Decreased levels of alternative co-stimulatory receptors OX40 and 4-1BB characterise T cells from head and neck cancer patients. Immunobiology 217, 669–675 (2012).
pubmed: 22204816
Kassouf, N. & Thornhill, M. H. Oral cancer cell lines can use multiple ligands, including Fas-L, TRAIL and TNF-alpha, to induce apoptosis in Jurkat T cells: possible mechanisms for immune escape by head and neck cancers. Oral Oncol. 44, 672–682 (2008).
pubmed: 17996489
Duray, A., Demoulin, S., Hubert, P., Delvenne, P. & Saussez, S. Immune suppression in head and neck cancers: a review. Clin. Dev. Immunol. 2010, 701657 (2010).
pubmed: 21437225
Bergmann, C. et al. Tumor-derived microvesicles in sera of patients with head and neck cancer and their role in tumor progression. Head Neck 31, 371–380 (2009).
pubmed: 19073006
pmcid: 2647573
Sukumar, M., Kishton, R. J. & Restifo, N. P. Metabolic reprograming of anti-tumor immunity. Curr. Opin. Immunol. 46, 14–22 (2017).
pubmed: 28412583
pmcid: 6327315
Chikamatsu, K. et al. Immunosuppressive activity of CD14+ HLA-DR- cells in squamous cell carcinoma of the head and neck. Cancer Sci. 103, 976–983 (2012).
pubmed: 22360618
pmcid: 7685071
Ostrand-Rosenberg, S. & Sinha, P. Myeloid-derived suppressor cells: linking inflammation and cancer. J. Immunol. 182, 4499–4506 (2009).
pubmed: 19342621
pmcid: 2810498
Luo, X. et al. HPV16 drives cancer immune escape via NLRX1-mediated degradation of STING. J. Clin. Investig. 130, 1635–1652 (2020).
pubmed: 31874109
Psaila, B. & Lyden, D. The metastatic niche: adapting the foreign soil. Nat. Rev. Cancer 9, 285–293 (2009).
pubmed: 19308068
pmcid: 19308068
Sleeman, J. P. The metastatic niche and stromal progression. Cancer Metastasis Rev. 31, 429–440 (2012).
pubmed: 22699312
pmcid: 3470821
Sleeman, J. P. et al. Concepts of metastasis in flux: the stromal progression model. Semin. Cancer Biol. 22, 174–186 (2012).
pubmed: 22374376
Mitra, S. K. & Schlaepfer, D. D. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr. Opin. Cell Biol. 18, 516–523 (2006).
pubmed: 16919435
Hiratsuka, S., Watanabe, A., Aburatani, H. & Maru, Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat. Cell Biol. 8, 1369–1375 (2006).
pubmed: 17128264
Erler, J. T. et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15, 35–44 (2009).
pubmed: 19111879
pmcid: 3050620
Gao, D. et al. Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Res. 72, 1384–1394 (2012).
pubmed: 22282653
Du, R. et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13, 206–220 (2008).
pubmed: 18328425
pmcid: 2643426
Chang, K. P. et al. Overexpression of macrophage inflammatory protein-3α in oral cavity squamous cell carcinoma is associated with nodal metastasis. Oral Oncol. 47, 108–113 (2011).
pubmed: 21163685
Wang, C., Liu, X. Q., Hou, J. S., Wang, J. N. & Huang, H. Z. Molecular mechanisms of chemoresistance in oral cancer. Chin. J. Dent. Res 19, 25–33 (2016).
pubmed: 26981604
Masui, T. et al. Snail-induced epithelial-mesenchymal transition promotes cancer stem cell-like phenotype in head and neck cancer cells. Int. J. Oncol. 44, 693–699 (2014).
pubmed: 24365974
Rausch, M. P. & Sertil, A. R. A stressful microenvironment: opposing effects of the endoplasmic reticulum stress response in the suppression and enhancement of adaptive tumor immunity. Int. Rev. Immunol. 34, 104–122 (2015).
pubmed: 25774773
Wang, H. C., Chan, L. P. & Cho, S. F. Targeting the immune microenvironment in the treatment of head and neck squamous cell carcinoma. Front. Oncol. 9, 1084 (2019).
pubmed: 31681613
pmcid: 6803444
Olson, O. C., Kim, H., Quail, D. F., Foley, E. A. & Joyce, J. A. Tumor-associated macrophages suppress the cytotoxic activity of antimitotic agents. Cell Rep. 19, 101–113 (2017).
pubmed: 28380350
pmcid: 5614506
Arce Vargas, F. et al. Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with PD-1 blockade to eradicate established tumors. Immunity 46, 577–586 (2017).
pubmed: 5437702
pmcid: 5437702
Lyford-Pike, S. et al. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res. 73, 1733–1741 (2013).
pubmed: 23288508
pmcid: 3602406
O’Donnell, J. S., Long, G. V., Scolyer, R. A., Teng, M. W. & Smyth, M. J. Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat. Rev. 52, 71–81 (2017).
pubmed: 27951441
Koyama, S. et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 7, 10501 (2016).
pubmed: 4757784
pmcid: 4757784
Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).
pubmed: 5007206
pmcid: 5007206
Palazón, A., Aragonés, J., Morales-Kastresana, A., de Landázuri, M. O. & Melero, I. Molecular pathways: hypoxia response in immune cells fighting or promoting cancer. Clin. Cancer Res. 18, 1207–1213 (2012).
pubmed: 22205687
Macha, M. A. et al. MicroRNAs (miRNAs) as biomarker(s) for prognosis and diagnosis of gastrointestinal (GI) cancers. Curr. Pharm. Des. 20, 5287–5297 (2014).
pubmed: 24479799
pmcid: 4113605
Lajer, C. B. et al. The role of miRNAs in human papilloma virus (HPV)-associated cancers: bridging between HPV-related head and neck cancer and cervical cancer. Br. J. Cancer 106, 1526–1534 (2012).
pubmed: 22472886
pmcid: 3341860
Wan, Y. et al. Salivary miRNA panel to detect HPV-positive and HPV-negative head and neck cancer patients. Oncotarget 8, 99990–100001 (2017).
pubmed: 29245955
pmcid: 5725146
Lajer, C. B. et al. Different miRNA signatures of oral and pharyngeal squamous cell carcinomas: a prospective translational study. Br. J. Cancer 104, 830–840 (2011).
pubmed: 21326242
pmcid: 3048216
Wald, A. I., Hoskins, E. E., Wells, S. I., Ferris, R. L. & Khan, S. A. Alteration of microRNA profiles in squamous cell carcinoma of the head and neck cell lines by human papillomavirus. Head Neck 33, 504–512 (2011).
pubmed: 20652977
pmcid: 3080748
Dai, Y. et al. MicroRNA expression profiles of head and neck squamous cell carcinoma with docetaxel-induced multidrug resistance. Head Neck 33, 786–791 (2011).
pubmed: 21560177
Yu, Z. W. et al. MicroRNAs contribute to the chemoresistance of cisplatin in tongue squamous cell carcinoma lines. Oral Oncol. 46, 317–322 (2010).
pubmed: 20219416
Liu, J., Tang, Q., Li, S. & Yang, X. Inhibition of HAX-1 by miR-125a reverses cisplatin resistance in laryngeal cancer stem cells. Oncotarget 7, 86446–86456 (2016).
pubmed: 27880721
pmcid: 5349925
Zhao, L. et al. Deregulation of the miR-222-ABCG2 regulatory module in tongue squamous cell carcinoma contributes to chemoresistance and enhanced migratory/invasive potential. Oncotarget 6, 44538–44550 (2015).
pubmed: 26517090
pmcid: 4792574
Sun, X., Xiao, D., Xu, T. & Yuan, Y. miRNA-24-3p promotes cell proliferation and regulates chemosensitivity in head and neck squamous cell carcinoma by targeting CHD5. Future Oncol. 12, 2701–2712 (2016).
pubmed: 27513190
Maia, D. et al. Expression of miR-296-5p as predictive marker for radiotherapy resistance in early-stage laryngeal carcinoma. J. Transl. Med. 13, 262 (2015).
pubmed: 26264462
pmcid: 4533949
Shiiba, M. et al. MicroRNA-125b regulates proliferation and radioresistance of oral squamous cell carcinoma. Br. J. Cancer 108, 1817–1821 (2013).
pubmed: 23591197
pmcid: 3658524
Li, G. et al. MicroRNA-324-3p regulates nasopharyngeal carcinoma radioresistance by directly targeting WNT2B. Eur. J. Cancer 49, 2596–2607 (2013).
pubmed: 23583221
Li, G. et al. miR-185-3p regulates nasopharyngeal carcinoma radioresistance by targeting WNT2B in vitro. Cancer Sci. 105, 1560–1568 (2014).
pubmed: 25297925
pmcid: 4317952
Suh, Y. E. et al. MicroRNA-196a promotes an oncogenic effect in head and neck cancer cells by suppressing annexin A1 and enhancing radioresistance. Int. J. Cancer 137, 1021–1034 (2015).
pubmed: 25523631
Zhang, T. et al. MiR-451 increases radiosensitivity of nasopharyngeal carcinoma cells by targeting ras-related protein 14 (RAB14). Tumour Biol.: J. Int. Soc. Oncodev. Biol. Med. 35, 12593–12599 (2014).
Qu, C. et al. MiR-205 determines the radioresistance of human nasopharyngeal carcinoma by directly targeting PTEN. Cell Cycle 11, 785–796 (2012).
pubmed: 22374676
pmcid: 3356830
Vahabi, M. et al. miR-96-5p targets PTEN expression affecting radio-chemosensitivity of HNSCC cells. J. Exp. Clin. Cancer Res. 38, 141 (2019).
pubmed: 30925916
pmcid: 6440033
Qu, J. Q. et al. MiR-23a sensitizes nasopharyngeal carcinoma to irradiation by targeting IL-8/Stat3 pathway. Oncotarget 6, 28341–28356 (2015).
pubmed: 26314966
Qu, J. Q. et al. MiRNA-203 reduces nasopharyngeal carcinoma radioresistance by targeting IL8/AKT signaling. Mol. Cancer therapeutics 14, 2653–2664 (2015).
Spanos, W. C. et al. Immune response during therapy with cisplatin or radiation for human papillomavirus–related head and neck cancer. Arch. Otolaryngol.–Head Neck Surg. 135, 1137–1146 (2009).
pubmed: 19917928
O’Sullivan, B. et al. Deintensification candidate subgroups in human papillomavirus–related oropharyngeal cancer according to minimal risk of distant metastasis. J. Clin. Oncol. 31, 543–550 (2013).
pubmed: 23295795
Meulendijks, D. et al. HPV-negative squamous cell carcinoma of the anal canal is unresponsive to standard treatment and frequently carries disruptive mutations in TP53. Br. J. Cancer 112, 1358 (2015).
pubmed: 25871546
pmcid: 4402454
Baruah, P. et al. TLR9 mediated tumor-stroma interactions in human papilloma virus (HPV)-positive head and neck squamous cell carcinoma up-regulate PD-L1 and PD-L2. Front. Immunol. 10, 1644 (2019).
pubmed: 31379843
pmcid: 6648892
Zandberg, D. P. et al. Durvalumab for recurrent or metastatic head and neck squamous cell carcinoma: results from a single-arm, phase II study in patients with >/=25% tumour cell PD-L1 expression who have progressed on platinum-based chemotherapy. Eur. J. Cancer 107, 142–152 (2019).
pubmed: 30576970
Powell, S. F. et al. Safety and efficacy of pembrolizumab with chemoradiotherapy in locally advanced head and neck squamous cell carcinoma: a phase IB study. J. Clin. Oncol. Jco1903156, https://doi.org/10.1200/jco.19.03156 (2020).
Ferris, R. L. et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 375, 1856–1867 (2016).
pubmed: 27718784
pmcid: 5564292
Hanoteau, A. et al. Tumor microenvironment modulation enhances immunologic benefit of chemoradiotherapy. J. Immunother. Cancer 7, 10 (2019).
pubmed: 30646957
pmcid: 6332704
Scharovsky, O. G., Mainetti, L. E. & Rozados, V. R. Metronomic chemotherapy: changing the paradigm that more is better. Curr. Oncol. 16, 7–15 (2009).
pubmed: 19370174
pmcid: 2669231
Tsuchikawa, T. et al. The immunological impact of neoadjuvant chemotherapy on the tumor microenvironment of esophageal squamous cell carcinoma. Ann. Surgical Oncol. 19, 1713–1719 (2012).
Bracci, L. et al. Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expression, B-cell and T-cell homeostatic proliferation, and specific tumor infiltration. Clin. Cancer Res. 13, 644–653 (2007).
pubmed: 17255288
Bracci, L., Schiavoni, G., Sistigu, A. & Belardelli, F. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ. 21, 15–25 (2014).
pubmed: 23787994
Concu, R. & Cordeiro, M. Cetuximab and the head and neck squamous cell cancer. Curr. Top. Medicinal Chem. 18, 192–198 (2018).
Jie, H. B. et al. CTLA-4
pubmed: 25832655
pmcid: 4452385
Dovedi, S. J. et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 74, 5458–5468 (2014).
pubmed: 25274032
Li, M. et al. Targeting of cancer‑associated fibroblasts enhances the efficacy of cancer chemotherapy by regulating the tumor microenvironment. Mol. Med. Rep. 13, 2476–2484 (2016).
pubmed: 26846566
pmcid: 4768992
Albert, S. et al. Focus on the role of the CXCL12/CXCR4 chemokine axis in head and neck squamous cell carcinoma. Head Neck 35, 1819–1828 (2013).
pubmed: 23468253
Yu, T. et al. RNAi targeting CXCR4 inhibits tumor growth through inducing cell cycle arrest and apoptosis. Mol. Ther.: J. Am. Soc. Gene Ther. 20, 398–407 (2012).
Schmitz, S. & Machiels, J. P. Targeting the tumor environment in squamous cell carcinoma of the head and neck. Curr. Treat. Options Oncol. 17, 37 (2016).
pubmed: 27262711
Moore, E. C. et al. Enhanced tumor control with combination mTOR and PD-L1 inhibition in syngeneic oral cavity cancers. Cancer Immunol. Res. 4, 611–620 (2016).
pubmed: 27076449
pmcid: 4930724
Grandis, J. R. & Tweardy, D. J. Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res. 53, 3579–3584 (1993).
pubmed: 8339264
Ishitoya, J. et al. Gene amplification and overexpression of EGF receptor in squamous cell carcinomas of the head and neck. Br. J. Cancer 59, 559–562 (1989).
pubmed: 2713242
pmcid: 2247138
Olayioye, M. A., Neve, R. M., Lane, H. A. & Hynes, N. E. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J. 19, 3159–3167 (2000).
pubmed: 10880430
pmcid: 313958
Liang, K., Ang, K. K., Milas, L., Hunter, N. & Fan, Z. The epidermal growth factor receptor mediates radioresistance. Int. J. Radiat. Oncol., Biol., Phys. 57, 246–254 (2003).
Şimşek, H., Han, Ü., Önal, B. & Şimişek, G. The expression of EGFR, cerbB2, p16, and p53 and their relationship with conventional parameters in squamous cell carcinoma of the larynx. Turkish J. Med. Sci. 44, 411–416 (2014).
Ang, K. K. et al. Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res. 62, 7350–7356 (2002).
pubmed: 12499279
Bussink, J., Kaanders, J. H. & van der Kogel, A. J. Microenvironmental transformations by VEGF- and EGF-receptor inhibition and potential implications for responsiveness to radiotherapy. Radiother. Oncol. J. Eur. Soc. Therapeutic Radiol. Oncol. 82, 10–17 (2007).
Rodemann, H. P., Dittmann, K. & Toulany, M. Radiation-induced EGFR-signaling and control of DNA-damage repair. Int. J. Radiat. Biol. 83, 781–791 (2007).
pubmed: 18058366
Ma, L. et al. Cancer stem-like cell properties are regulated by EGFR/AKT/β-catenin signaling and preferentially inhibited by gefitinib in nasopharyngeal carcinoma. FEBS J. 280, 2027–2041 (2013).
pubmed: 23461856
Young, R. J. et al. Relationship between epidermal growth factor receptor status, p16(INK4A), and outcome in head and neck squamous cell carcinoma. Cancer Epidemiol., Biomark. Prev. 20, 1230–1237 (2011).
Reimers, N. et al. Combined analysis of HPV-DNA, p16 and EGFR expression to predict prognosis in oropharyngeal cancer. Int. J. Cancer 120, 1731–1738 (2007).
pubmed: 17236202
Kong, C. S. et al. The relationship between human papillomavirus status and other molecular prognostic markers in head and neck squamous cell carcinomas. Int. J. Radiat. Oncol., Biol., Phys. 74, 553–561 (2009).
Kumar, B. et al. EGFR, p16, HPV Titer, Bcl-xL and p53, sex, and smoking as indicators of response to therapy and survival in oropharyngeal cancer. J. Clin. Oncol. 26, 3128–3137 (2008).
pubmed: 18474878
pmcid: 2744895
Kumar, B. et al. Response to therapy and outcomes in oropharyngeal cancer are associated with biomarkers including human papillomavirus, epidermal growth factor receptor, gender, and smoking. Int. J. Radiat. Oncol., Biol., Phys. 69, S109–S111 (2007).
Sok, J. C. et al. Mutant epidermal growth factor receptor (EGFRvIII) contributes to head and neck cancer growth and resistance to EGFR targeting. Clin. Cancer Res. 12, 5064–5073 (2006).
pubmed: 16951222
Misiukiewicz, K. & Posner, M. The SPECTRUM of findings in treatment options for recurrent/metastatic head and neck cancer. J. Comp. Effectiveness Res. 2, 533–535 (2013).
Bernier, J., Bentzen, S. M. & Vermorken, J. B. Molecular therapy in head and neck oncology. Nat. Rev. Clin. Oncol. 6, 266–277 (2009).
pubmed: 19390553
Raimondi, A. R., Molinolo, A. & Gutkind, J. S. Rapamycin prevents early onset of tumorigenesis in an oral-specific K-ras and p53 two-hit carcinogenesis model. Cancer Res. 69, 4159–4166 (2009).
pubmed: 19435901
Zhong, R., Pytynia, M., Pelizzari, C. & Spiotto, M. Bioluminescent imaging of HPV-positive oral tumor growth and its response to image-guided radiotherapy. Cancer Res. 74, 2073–2081 (2014).
pubmed: 24525739
pmcid: 4662542
Lechner, A. et al. Tumor-associated B cells and humoral immune response in head and neck squamous cell carcinoma. Oncoimmunology 8, 1535293 (2019).
pubmed: 30723574
pmcid: 6350680