SRD5A3-CDG: 3D structure modeling, clinical spectrum, and computer-based dysmorphic facial recognition.


Journal

American journal of medical genetics. Part A
ISSN: 1552-4833
Titre abrégé: Am J Med Genet A
Pays: United States
ID NLM: 101235741

Informations de publication

Date de publication:
04 2021
Historique:
revised: 02 12 2020
received: 23 07 2020
accepted: 14 12 2020
pubmed: 7 1 2021
medline: 7 8 2021
entrez: 6 1 2021
Statut: ppublish

Résumé

Pathogenic variants in Steroid 5 alpha reductase type 3 (SRD5A3) cause rare inherited congenital disorder of glycosylation known as SRD5A3-CDG (MIM# 612379). To date, 43 affected individuals have been reported. Despite the development of various dysmorphic features in significant number of patients, facial recognition entity has not yet been established for SRD5A3-CDG. Herein, we reported a novel SRD5A3 missense pathogenic variant c.460 T > C p.(Ser154Pro). The 3D structural modeling of the SRD5A3 protein revealed additional transmembrane α-helices and predicted that the p.(Ser154Pro) variant is located in a potential active site and is capable of reducing its catalytic efficiency. Based on phenotypes of our patients and all published SRD5A3-CDG cases, we identified the most common clinical features as well as some recurrent dysmorphic features such as arched eyebrows, wide eyes, shallow nasal bridge, short nose, and large mouth. Based on facial digital 2D images, we successfully designed and validated a SRD5A3-CDG computer based dysmorphic facial analysis, which achieved 92.5% accuracy. The current work integrates genotypic, 3D structural modeling and phenotypic characteristics of CDG-SRD5A3 cases with the successful development of computer tool for accurate facial recognition of CDG-SRD5A3 complex cases to assist in the diagnosis of this particular disorder globally.

Identifiants

pubmed: 33403770
doi: 10.1002/ajmg.a.62065
doi:

Substances chimiques

Membrane Proteins 0
3-Oxo-5-alpha-Steroid 4-Dehydrogenase EC 1.3.99.5
SRD5A3 protein, human EC 1.3.99.5

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1081-1090

Informations de copyright

© 2021 Wiley Periodicals LLC.

Références

Al-Gazali, L., Hertecant, J., Algawi, K., El Teraifi, H., & Dattani, M. (2008). A new autosomal recessive syndrome of ocular colobomas, ichthyosis, brain malformations and endocrine abnormalities in an inbred Emirati family. American Journal of Medical Genetics Part A, 146A(7), 813-819. https://doi.org/10.1002/ajmg.a.32114
Al-Sarraj, Y., Ben-Omran, T., Tolefat, M., Bejaoui, Y., El-Shanti, H., & Kambouris, M. (2014). A novel missense mutation in SRD5A3 causes congenital disorder of glycosylation type I (Cerebello-ocular syndrome). Journal of Inborn Errors of Metabolism and Screening., 2, 232640981455052. https://doi.org/10.1177/2326409814550528
Bastaki, F., Bizzari, S., Hamici, S., Nair, P., Mohamed, M., Saif, F., … Hamzeh, A. R. (2018). Single-center experience of N-linked congenital disorders of glycosylation with a summary of molecularly characterized cases in Arabs. Annals of Human Genetics, 82(1), 35-47. https://doi.org/10.1111/ahg.12220
Bayat, A., Knaus, A., Juul, A. W., Dukic, D., Gardella, E., Charzewska, A., … DDD Study Group. (2019). PIGT-CDG, a disorder of the glycosylphosphatidylinositol anchor: Description of 13 novel patients and expansion of the clinical characteristics. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 21(10), 2216-2223.
Cantagrel, V., Lefeber, D. J., Ng, B. G., Guan, Z., Silhavy, J. L., Bielas, S. L., … Gleeson, J. G. (2010). SRD5A3 is required for the conversion of polyprenol to dolichol, essential for N-linked protein glycosylation. Cell, 142(2), 203-217. https://doi.org/10.1016/j.cell.2010.06.001
Chang, I. J., He, M., & Lam, C. T. (2018). Congenital disorders of glycosylation. Annals of Translational Medicine, 6(24), 477. https://doi.org/10.21037/atm.2018.10.45
Dudding-Byth, T., Baxter, A., Holliday, E. G., Hackett, A., O'Donnell, S., White, S. M., … Lovell, B. C. (2017). Computer face-matching technology using two-dimensional photographs accurately matches the facial gestalt of unrelated individuals with the same syndromic form of intellectual disability. BMC Biotechnology, 17, 90. https://doi.org/10.1186/s12896-017-0410-1
Ferry, Q., Steinberg, J., Webber, C., FitzPatrick, D. R., Ponting, C. P., Zisserman, A., & Nellåker, C. (2014). Diagnostically relevant facial gestalt information from ordinary photos. eLife, 3. https://doi.org/10.7554/eLife.02020.
Gründahl, J. E. H., Guan, Z., Rust, S., Reunert, J., Müller, B., Du Chesne, I., … Marquardt, T. (2012). Life with too much polyprenol-polyprenol reductase deficiency. Molecular Genetics and Metabolism, 105(4), 642-651. https://doi.org/10.1016/j.ymgme.2011.12.017
Gupta, N., Verma, G., Kabra, M., Bijarnia-Mahay, S., & Ganapathy, A. (2018). Identification of a case of SRD5A3-congenital disorder of glycosylation (CDG1Q) by exome sequencing. The Indian Journal of Medical Research, 147(4), 422-426. https://doi.org/10.4103/ijmr.IJMR_820_16
Gurovich, Y., Hanani, Y., Bar, O., Nadav, G., Fleischer, N., Gelbman, D., & Gripp, K. W. (2019). Identifying facial phenotypes of genetic disorders using deep learning. Nature Medicine, 25(1), 60-64. http://dx.doi.org/10.1038/s41591-018-0279-0
Helander, A., Wielders, J., Anton, R., Arndt, T., Bianchi, V., Deenmamode, J., … Schellenberg, F. (2016). Standardisation and use of the alcohol biomarker carbohydrate-deficient transferrin (CDT). Clinica Chimica Acta, 459, 19-24. https://doi.org/10.1016/j.cca.2016.05.016
Hsieh, T.-C., Mensah, M. A., Pantel, J. T., Aguilar, D., Bar, O., Bayat, A., … Krawitz, P. M. (2019). PEDIA: Prioritization of exome data by image analysis. Genetics in Medicine, 21(12), 2807-2814. https://doi.org/10.1038/s41436-019-0566-2
Jaeken, J., & Péanne, R. (2017). What is new in CDG? Journal of Inherited Metabolic Disease, 40(4), 569-586. https://doi.org/10.1007/s10545-017-0050-6
Kahrizi, K., Hu, C. H., Garshasbi, M., Abedini, S. S., Ghadami, S., Kariminejad, R., … Tzschach, A. (2011). Next generation sequencing in a family with autosomal recessive Kahrizi syndrome (OMIM 612713) reveals a homozygous frameshift mutation in SRD5A3. European Journal of Human Genetics, 19(1), 115-117. https://doi.org/10.1038/ejhg.2010.132
Kahrizi, K., Najmabadi, H., Kariminejad, R., Jamali, P., Malekpour, M., Garshasbi, M., … Tzschach, A. (2009). An autosomal recessive syndrome of severe mental retardation, cataract, coloboma and kyphosis maps to the pericentromeric region of chromosome 4. European Journal of Human Genetics, 17(1), 125-128. https://doi.org/10.1038/ejhg.2008.159
Kara, B., Ayhan, Ö., Gökçay, G., Başboğaoğlu, N., & Tolun, A. (2014). Adult phenotype and further phenotypic variability in SRD5A3-CDG. BMC Medical Genetics, 15, 10. https://doi.org/10.1186/1471-2350-15-10
Kasapkara, C. S., Tümer, L., Ezgü, F. S., Hasanoğlu, A., Race, V., Matthijs, G., & Jaeken, J. (2012). SRD5A3-CDG: A patient with a novel mutation. European Journal of Paediatric Neurology: EJPN: Official Journal of the European Paediatric Neurology Society, 16(5), 554-556. https://doi.org/10.1016/j.ejpn.2011.12.011
Klouwer, F. C. C., Berendse, K., Ferdinandusse, S., Wanders, R. J. A., Engelen, M., & Poll-The, B. T. (2015). Zellweger spectrum disorders: Clinical overview and management approach. Orphanet Journal of Rare Diseases, 10, 151. https://doi.org/10.1186/s13023-015-0368-9
Kousal, B., Honzík, T., Hansíková, H., Ondrušková, N., Čechová, A., Tesařová, M., … Lišková, P. (2019). Review of SRD5A3 disease-causing sequence variants and ocular findings in steroid 5α-reductase type 3 congenital disorder of glycosylation, and a detailed new case. Folia Biologica, 65(3), 134-141.
Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283-291. https://doi.org/10.1107/S0021889892009944
Martinez-Monseny, A., Cuadras, D., Bolasell, M., Muchart, J., Arjona, C., Borregan, M., … Serrano, M. (2019). From gestalt to gene: Early predictive dysmorphic features of PMM2-CDG. Journal of Medical Genetics, 56(4), 236-245. https://doi.org/10.1136/jmedgenet-2018-105588
Medina-Cano, D., Ucuncu, E., Nguyen, L. S., Nicouleau, M., Lipecka, J., Bizot, J.-C., … Cantagrel, V. (2018). High N-glycan multiplicity is critical for neuronal adhesion and sensitizes the developing cerebellum to N-glycosylation defect. eLife, 7, e38309. https://doi.org/10.7554/eLife38309
Medrano, C., Vega, A., Navarrete, R., Ecay, M. J., Calvo, R., Pascual, S. I., … Pérez-Cerdá, C. (2019). Clinical and molecular diagnosis of non-phosphomannomutase 2 N-linked congenital disorders of glycosylation in Spain. Clinical Genetics, 95(5), 615-626. https://doi.org/10.1111/cge.13508
Morava, E., Wosik, H., Kárteszi, J., Guillard, M., Adamowicz, M., Sykut-Cegielska, J., … Lefeber, D. J. (2008). Congenital disorder of glycosylation type ix: Review of clinical spectrum and diagnostic steps. Journal of Inherited Metabolic Disease, 31(3), 450-456. https://doi.org/10.1007/s10545-008-0822-0
Morava, E., Wevers, R. A., Cantagrel, V., Hoefsloot, L. H., Al-Gazali, L., Schoots, J., … Lefeber, D. J. (2010). A novel cerebello-ocular syndrome with abnormal glycosylation due to abnormalities in dolichol metabolism. Brain, 133(11), 3210-3220. https://doi.org/10.1093/brain/awq261
Najmabadi, H., Hu, H., Garshasbi, M., Zemojtel, T., Abedini, S. S., Chen, W., … Ropers, H. H. (2011). Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature, 478(7367), 57-63. https://doi.org/10.1038/nature10423
Nowaczyk, M. J., & Wassif, C. A. (1993). Smith-Lemli-Opitz Syndrome. In M. P. Adam, H. H. Ardinger, R. A. Pagon, S. E. Wallace, L. J. Bean, K. Stephens, & A. Amemiya (Eds.), GeneReviews®. Seattle: University of Washington. http://www.ncbi.nlm.nih.gov/books/NBK1143/
Pantel, J. T., Zhao, M., Mensah, M. A., Hajjir, N., Hsieh, T.-C., Hanani, Y., … Krawitz, P. M. (2018). Advances in computer-assisted syndrome recognition by the example of inborn errors of metabolism. Journal of Inherited Metabolic Disease, 41(3), 533-539. https://doi.org/10.1007/s10545-018-0174-3
Reily, C., Stewart, T. J., Renfrow, M. B., & Novak, J. (2019). Glycosylation in health and disease. Nature Reviews. Nephrology, 15(6), 346-366. https://doi.org/10.1038/s41581-019-0129-4
Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., … ACMG Laboratory Quality Assurance Committee. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 17(5), 405-424. https://doi.org/10.1038/gim.2015.30
Schellenberg, F., & Humeau, C. (2017). Standardization of the capillary electrophoresis procedures Capillarys® CDT and Minicap® CDT in comparison to the IFCC reference measurement procedure. Annales de Biologie Clinique, 75(3), 319-326. https://doi.org/10.1684/abc.2017.1243
Sun, L., Zhao, Y., Zhou, K., Freeze, H. H., Zhang, Y., & Xu, H. (2013). Insufficient ER-stress response causes selective mouse cerebellar granule cell degeneration resembling that seen in congenital disorders of glycosylation. Molecular Brain, 6, 52. https://doi.org/10.1186/1756-6606-6-52
Taylor, R. L., Arno, G., Poulter, J. A., Khan, K. N., Morarji, J., Hull, S., … for the UK Inherited Retinal Disease Consortium and the 100,000 Genomes Project. (2017). Association of Steroid 5α-Reductase type 3 congenital disorder of glycosylation with early-onset retinal dystrophy. JAMA Ophthalmology, 135(4), 339-347. https://doi.org/10.1001/jamaophthalmol.2017.0046
Tsodikov, O. V., Record, M. T., & Sergeev, Y. V. (2002). Novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature. Journal of Computational Chemistry, 23(6), 600-609. https://doi.org/10.1002/jcc.10061
Tuysuz, B., Pehlivan, D., Özkök, A., Jhangiani, S., Yalcinkaya, C., Zeybek, Ç. A., … Jaeken, J. (2015). Phenotypic expansion of congenital disorder of glycosylation due to SRD5A3 null mutation. JIMD Reports, 26, 7-12. https://doi.org/10.1007/8904_2015_478
Wheeler, P. G., Ng, B. G., Sanford, L., Sutton, V. R., Bartholomew, D. W., Pastore, M. T., … Freeze, H. H. (2016). SRD5A3-CDG: Expanding the phenotype of a congenital disorder of glycosylation with emphasis on adult onset features. American Journal of Medical Genetics. Part A, 170(12), 3165-3171. https://doi.org/10.1002/ajmg.a.37875

Auteurs

Ikhlas Ben Ayed (I)

Laboratory of Molecular and Cellular Screening Processes (LPCMC), LR15CBS07, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia.
Medical Genetic Department, Hedi Chaker Hospital, Sfax, Tunisia.
Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia.

Wael Ouarda (W)

ReGIM-Lab, Research Groups in Intelligent Machines, LR11ES48, National School of Engineers of Sfax, Sfax, Tunisia.

Fakher Frikha (F)

Faculty of Sciences of Sfax (FSS), University of Sfax, Sfax, Tunisia.

Fatma Kammoun (F)

Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia.
Research Laboratory "Neuropédiatrie", LR19ES15, Sfax University, Sfax, Tunisia.

Amal Souissi (A)

Laboratory of Molecular and Cellular Screening Processes (LPCMC), LR15CBS07, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia.

Mariem Ben Said (M)

Laboratory of Molecular and Cellular Screening Processes (LPCMC), LR15CBS07, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia.

Amal Bouzid (A)

Laboratory of Molecular and Cellular Screening Processes (LPCMC), LR15CBS07, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia.

Ines Elloumi (I)

Laboratory of Molecular and Cellular Screening Processes (LPCMC), LR15CBS07, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia.

Tarak M Hamdani (TM)

ReGIM-Lab, Research Groups in Intelligent Machines, LR11ES48, National School of Engineers of Sfax, Sfax, Tunisia.

Nourhene Gharbi (N)

Medical Genetic Department, Hedi Chaker Hospital, Sfax, Tunisia.
Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia.

Nesrine Baklouti (N)

ReGIM-Lab, Research Groups in Intelligent Machines, LR11ES48, National School of Engineers of Sfax, Sfax, Tunisia.

Manel Guirat (M)

Medical Genetic Department, Hedi Chaker Hospital, Sfax, Tunisia.

Fatma Mejdoub (F)

Medical Genetic Department, Hedi Chaker Hospital, Sfax, Tunisia.

Najla Kharrat (N)

Laboratory of Molecular and Cellular Screening Processes (LPCMC), LR15CBS07, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia.

Imene Boujelbene (I)

Medical Genetic Department, Hedi Chaker Hospital, Sfax, Tunisia.
Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia.

Fatma Abdelhedi (F)

Medical Genetic Department, Hedi Chaker Hospital, Sfax, Tunisia.
Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia.

Neila Belguith (N)

Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia.
Laboratory of Human Molecular Genetics (LGMH), Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia.
Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, Tunisia.

Leila Keskes (L)

Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia.
Laboratory of Human Molecular Genetics (LGMH), Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia.

Abdullah Ahmed Gibriel (AA)

Biochemistry and Molecular Biology Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt.

Hassen Kamoun (H)

Medical Genetic Department, Hedi Chaker Hospital, Sfax, Tunisia.
Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia.

Chahnez Triki (C)

Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia.
Research Laboratory "Neuropédiatrie", LR19ES15, Sfax University, Sfax, Tunisia.

Adel M Alimi (AM)

ReGIM-Lab, Research Groups in Intelligent Machines, LR11ES48, National School of Engineers of Sfax, Sfax, Tunisia.

Saber Masmoudi (S)

Laboratory of Molecular and Cellular Screening Processes (LPCMC), LR15CBS07, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH