SRD5A3-CDG: 3D structure modeling, clinical spectrum, and computer-based dysmorphic facial recognition.
3-Oxo-5-alpha-Steroid 4-Dehydrogenase
/ genetics
Abnormalities, Multiple
/ genetics
Adolescent
Cataract
/ complications
Child
Child, Preschool
Congenital Disorders of Glycosylation
/ complications
Eye
/ pathology
Facial Recognition
Facies
Female
Humans
Membrane Proteins
/ genetics
Muscular Atrophy
/ complications
Mutation, Missense
/ genetics
3D structure modeling
congenital disorders of glycosylation
exome-clinical sequencing
facial recognition
polyprenol reductase
Journal
American journal of medical genetics. Part A
ISSN: 1552-4833
Titre abrégé: Am J Med Genet A
Pays: United States
ID NLM: 101235741
Informations de publication
Date de publication:
04 2021
04 2021
Historique:
revised:
02
12
2020
received:
23
07
2020
accepted:
14
12
2020
pubmed:
7
1
2021
medline:
7
8
2021
entrez:
6
1
2021
Statut:
ppublish
Résumé
Pathogenic variants in Steroid 5 alpha reductase type 3 (SRD5A3) cause rare inherited congenital disorder of glycosylation known as SRD5A3-CDG (MIM# 612379). To date, 43 affected individuals have been reported. Despite the development of various dysmorphic features in significant number of patients, facial recognition entity has not yet been established for SRD5A3-CDG. Herein, we reported a novel SRD5A3 missense pathogenic variant c.460 T > C p.(Ser154Pro). The 3D structural modeling of the SRD5A3 protein revealed additional transmembrane α-helices and predicted that the p.(Ser154Pro) variant is located in a potential active site and is capable of reducing its catalytic efficiency. Based on phenotypes of our patients and all published SRD5A3-CDG cases, we identified the most common clinical features as well as some recurrent dysmorphic features such as arched eyebrows, wide eyes, shallow nasal bridge, short nose, and large mouth. Based on facial digital 2D images, we successfully designed and validated a SRD5A3-CDG computer based dysmorphic facial analysis, which achieved 92.5% accuracy. The current work integrates genotypic, 3D structural modeling and phenotypic characteristics of CDG-SRD5A3 cases with the successful development of computer tool for accurate facial recognition of CDG-SRD5A3 complex cases to assist in the diagnosis of this particular disorder globally.
Identifiants
pubmed: 33403770
doi: 10.1002/ajmg.a.62065
doi:
Substances chimiques
Membrane Proteins
0
3-Oxo-5-alpha-Steroid 4-Dehydrogenase
EC 1.3.99.5
SRD5A3 protein, human
EC 1.3.99.5
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1081-1090Informations de copyright
© 2021 Wiley Periodicals LLC.
Références
Al-Gazali, L., Hertecant, J., Algawi, K., El Teraifi, H., & Dattani, M. (2008). A new autosomal recessive syndrome of ocular colobomas, ichthyosis, brain malformations and endocrine abnormalities in an inbred Emirati family. American Journal of Medical Genetics Part A, 146A(7), 813-819. https://doi.org/10.1002/ajmg.a.32114
Al-Sarraj, Y., Ben-Omran, T., Tolefat, M., Bejaoui, Y., El-Shanti, H., & Kambouris, M. (2014). A novel missense mutation in SRD5A3 causes congenital disorder of glycosylation type I (Cerebello-ocular syndrome). Journal of Inborn Errors of Metabolism and Screening., 2, 232640981455052. https://doi.org/10.1177/2326409814550528
Bastaki, F., Bizzari, S., Hamici, S., Nair, P., Mohamed, M., Saif, F., … Hamzeh, A. R. (2018). Single-center experience of N-linked congenital disorders of glycosylation with a summary of molecularly characterized cases in Arabs. Annals of Human Genetics, 82(1), 35-47. https://doi.org/10.1111/ahg.12220
Bayat, A., Knaus, A., Juul, A. W., Dukic, D., Gardella, E., Charzewska, A., … DDD Study Group. (2019). PIGT-CDG, a disorder of the glycosylphosphatidylinositol anchor: Description of 13 novel patients and expansion of the clinical characteristics. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 21(10), 2216-2223.
Cantagrel, V., Lefeber, D. J., Ng, B. G., Guan, Z., Silhavy, J. L., Bielas, S. L., … Gleeson, J. G. (2010). SRD5A3 is required for the conversion of polyprenol to dolichol, essential for N-linked protein glycosylation. Cell, 142(2), 203-217. https://doi.org/10.1016/j.cell.2010.06.001
Chang, I. J., He, M., & Lam, C. T. (2018). Congenital disorders of glycosylation. Annals of Translational Medicine, 6(24), 477. https://doi.org/10.21037/atm.2018.10.45
Dudding-Byth, T., Baxter, A., Holliday, E. G., Hackett, A., O'Donnell, S., White, S. M., … Lovell, B. C. (2017). Computer face-matching technology using two-dimensional photographs accurately matches the facial gestalt of unrelated individuals with the same syndromic form of intellectual disability. BMC Biotechnology, 17, 90. https://doi.org/10.1186/s12896-017-0410-1
Ferry, Q., Steinberg, J., Webber, C., FitzPatrick, D. R., Ponting, C. P., Zisserman, A., & Nellåker, C. (2014). Diagnostically relevant facial gestalt information from ordinary photos. eLife, 3. https://doi.org/10.7554/eLife.02020.
Gründahl, J. E. H., Guan, Z., Rust, S., Reunert, J., Müller, B., Du Chesne, I., … Marquardt, T. (2012). Life with too much polyprenol-polyprenol reductase deficiency. Molecular Genetics and Metabolism, 105(4), 642-651. https://doi.org/10.1016/j.ymgme.2011.12.017
Gupta, N., Verma, G., Kabra, M., Bijarnia-Mahay, S., & Ganapathy, A. (2018). Identification of a case of SRD5A3-congenital disorder of glycosylation (CDG1Q) by exome sequencing. The Indian Journal of Medical Research, 147(4), 422-426. https://doi.org/10.4103/ijmr.IJMR_820_16
Gurovich, Y., Hanani, Y., Bar, O., Nadav, G., Fleischer, N., Gelbman, D., & Gripp, K. W. (2019). Identifying facial phenotypes of genetic disorders using deep learning. Nature Medicine, 25(1), 60-64. http://dx.doi.org/10.1038/s41591-018-0279-0
Helander, A., Wielders, J., Anton, R., Arndt, T., Bianchi, V., Deenmamode, J., … Schellenberg, F. (2016). Standardisation and use of the alcohol biomarker carbohydrate-deficient transferrin (CDT). Clinica Chimica Acta, 459, 19-24. https://doi.org/10.1016/j.cca.2016.05.016
Hsieh, T.-C., Mensah, M. A., Pantel, J. T., Aguilar, D., Bar, O., Bayat, A., … Krawitz, P. M. (2019). PEDIA: Prioritization of exome data by image analysis. Genetics in Medicine, 21(12), 2807-2814. https://doi.org/10.1038/s41436-019-0566-2
Jaeken, J., & Péanne, R. (2017). What is new in CDG? Journal of Inherited Metabolic Disease, 40(4), 569-586. https://doi.org/10.1007/s10545-017-0050-6
Kahrizi, K., Hu, C. H., Garshasbi, M., Abedini, S. S., Ghadami, S., Kariminejad, R., … Tzschach, A. (2011). Next generation sequencing in a family with autosomal recessive Kahrizi syndrome (OMIM 612713) reveals a homozygous frameshift mutation in SRD5A3. European Journal of Human Genetics, 19(1), 115-117. https://doi.org/10.1038/ejhg.2010.132
Kahrizi, K., Najmabadi, H., Kariminejad, R., Jamali, P., Malekpour, M., Garshasbi, M., … Tzschach, A. (2009). An autosomal recessive syndrome of severe mental retardation, cataract, coloboma and kyphosis maps to the pericentromeric region of chromosome 4. European Journal of Human Genetics, 17(1), 125-128. https://doi.org/10.1038/ejhg.2008.159
Kara, B., Ayhan, Ö., Gökçay, G., Başboğaoğlu, N., & Tolun, A. (2014). Adult phenotype and further phenotypic variability in SRD5A3-CDG. BMC Medical Genetics, 15, 10. https://doi.org/10.1186/1471-2350-15-10
Kasapkara, C. S., Tümer, L., Ezgü, F. S., Hasanoğlu, A., Race, V., Matthijs, G., & Jaeken, J. (2012). SRD5A3-CDG: A patient with a novel mutation. European Journal of Paediatric Neurology: EJPN: Official Journal of the European Paediatric Neurology Society, 16(5), 554-556. https://doi.org/10.1016/j.ejpn.2011.12.011
Klouwer, F. C. C., Berendse, K., Ferdinandusse, S., Wanders, R. J. A., Engelen, M., & Poll-The, B. T. (2015). Zellweger spectrum disorders: Clinical overview and management approach. Orphanet Journal of Rare Diseases, 10, 151. https://doi.org/10.1186/s13023-015-0368-9
Kousal, B., Honzík, T., Hansíková, H., Ondrušková, N., Čechová, A., Tesařová, M., … Lišková, P. (2019). Review of SRD5A3 disease-causing sequence variants and ocular findings in steroid 5α-reductase type 3 congenital disorder of glycosylation, and a detailed new case. Folia Biologica, 65(3), 134-141.
Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283-291. https://doi.org/10.1107/S0021889892009944
Martinez-Monseny, A., Cuadras, D., Bolasell, M., Muchart, J., Arjona, C., Borregan, M., … Serrano, M. (2019). From gestalt to gene: Early predictive dysmorphic features of PMM2-CDG. Journal of Medical Genetics, 56(4), 236-245. https://doi.org/10.1136/jmedgenet-2018-105588
Medina-Cano, D., Ucuncu, E., Nguyen, L. S., Nicouleau, M., Lipecka, J., Bizot, J.-C., … Cantagrel, V. (2018). High N-glycan multiplicity is critical for neuronal adhesion and sensitizes the developing cerebellum to N-glycosylation defect. eLife, 7, e38309. https://doi.org/10.7554/eLife38309
Medrano, C., Vega, A., Navarrete, R., Ecay, M. J., Calvo, R., Pascual, S. I., … Pérez-Cerdá, C. (2019). Clinical and molecular diagnosis of non-phosphomannomutase 2 N-linked congenital disorders of glycosylation in Spain. Clinical Genetics, 95(5), 615-626. https://doi.org/10.1111/cge.13508
Morava, E., Wosik, H., Kárteszi, J., Guillard, M., Adamowicz, M., Sykut-Cegielska, J., … Lefeber, D. J. (2008). Congenital disorder of glycosylation type ix: Review of clinical spectrum and diagnostic steps. Journal of Inherited Metabolic Disease, 31(3), 450-456. https://doi.org/10.1007/s10545-008-0822-0
Morava, E., Wevers, R. A., Cantagrel, V., Hoefsloot, L. H., Al-Gazali, L., Schoots, J., … Lefeber, D. J. (2010). A novel cerebello-ocular syndrome with abnormal glycosylation due to abnormalities in dolichol metabolism. Brain, 133(11), 3210-3220. https://doi.org/10.1093/brain/awq261
Najmabadi, H., Hu, H., Garshasbi, M., Zemojtel, T., Abedini, S. S., Chen, W., … Ropers, H. H. (2011). Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature, 478(7367), 57-63. https://doi.org/10.1038/nature10423
Nowaczyk, M. J., & Wassif, C. A. (1993). Smith-Lemli-Opitz Syndrome. In M. P. Adam, H. H. Ardinger, R. A. Pagon, S. E. Wallace, L. J. Bean, K. Stephens, & A. Amemiya (Eds.), GeneReviews®. Seattle: University of Washington. http://www.ncbi.nlm.nih.gov/books/NBK1143/
Pantel, J. T., Zhao, M., Mensah, M. A., Hajjir, N., Hsieh, T.-C., Hanani, Y., … Krawitz, P. M. (2018). Advances in computer-assisted syndrome recognition by the example of inborn errors of metabolism. Journal of Inherited Metabolic Disease, 41(3), 533-539. https://doi.org/10.1007/s10545-018-0174-3
Reily, C., Stewart, T. J., Renfrow, M. B., & Novak, J. (2019). Glycosylation in health and disease. Nature Reviews. Nephrology, 15(6), 346-366. https://doi.org/10.1038/s41581-019-0129-4
Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., … ACMG Laboratory Quality Assurance Committee. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 17(5), 405-424. https://doi.org/10.1038/gim.2015.30
Schellenberg, F., & Humeau, C. (2017). Standardization of the capillary electrophoresis procedures Capillarys® CDT and Minicap® CDT in comparison to the IFCC reference measurement procedure. Annales de Biologie Clinique, 75(3), 319-326. https://doi.org/10.1684/abc.2017.1243
Sun, L., Zhao, Y., Zhou, K., Freeze, H. H., Zhang, Y., & Xu, H. (2013). Insufficient ER-stress response causes selective mouse cerebellar granule cell degeneration resembling that seen in congenital disorders of glycosylation. Molecular Brain, 6, 52. https://doi.org/10.1186/1756-6606-6-52
Taylor, R. L., Arno, G., Poulter, J. A., Khan, K. N., Morarji, J., Hull, S., … for the UK Inherited Retinal Disease Consortium and the 100,000 Genomes Project. (2017). Association of Steroid 5α-Reductase type 3 congenital disorder of glycosylation with early-onset retinal dystrophy. JAMA Ophthalmology, 135(4), 339-347. https://doi.org/10.1001/jamaophthalmol.2017.0046
Tsodikov, O. V., Record, M. T., & Sergeev, Y. V. (2002). Novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature. Journal of Computational Chemistry, 23(6), 600-609. https://doi.org/10.1002/jcc.10061
Tuysuz, B., Pehlivan, D., Özkök, A., Jhangiani, S., Yalcinkaya, C., Zeybek, Ç. A., … Jaeken, J. (2015). Phenotypic expansion of congenital disorder of glycosylation due to SRD5A3 null mutation. JIMD Reports, 26, 7-12. https://doi.org/10.1007/8904_2015_478
Wheeler, P. G., Ng, B. G., Sanford, L., Sutton, V. R., Bartholomew, D. W., Pastore, M. T., … Freeze, H. H. (2016). SRD5A3-CDG: Expanding the phenotype of a congenital disorder of glycosylation with emphasis on adult onset features. American Journal of Medical Genetics. Part A, 170(12), 3165-3171. https://doi.org/10.1002/ajmg.a.37875