Construction of Eukaryotic Cell Biomimetics: Hierarchical Polymersomes-in-Proteinosome Multicompartment with Enzymatic Reactions Modulated Protein Transportation.

biological responses cell engineering multicompartments polymersomes proteinosomes

Journal

Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338

Informations de publication

Date de publication:
02 2021
Historique:
received: 15 09 2020
revised: 13 11 2020
pubmed: 30 12 2020
medline: 10 7 2021
entrez: 29 12 2020
Statut: ppublish

Résumé

The eukaryotic cell is a smart compartment containing an outer permeable membrane, a cytoskeleton, and functional organelles, presenting part structures for life. The integration of membrane-containing artificial organelles (=polymersomes) into a large microcompartment is a key step towards the establishment of exquisite cellular biomimetics with different membrane properties. Herein, an efficient way to construct a hierarchical multicompartment composed of a hydrogel-filled proteinosome hybrid structure with an outer homogeneous membrane, a smart cytoskeleton-like scaffold, and polymersomes is designed. Specially, this hybrid structure creates a micro-environment for pH-responsive polymersomes to execute a desired substance transport upon response to biological stimuli. Within the dynamic pH-stable skeleton of the protein hydrogels, polymersomes with loaded PEGylated insulin biomacromolecules demonstrate a pH-responsive reversible swelling-deswelling and a desirable, on-demand cargo release which is induced by the enzymatic oxidation of glucose to gluconic acid. This stimulus responsive behavior is realized by tunable on/off states through protonation of the polymersomes membrane under the enzymatic reaction of glucose oxidase, integrated in the skeleton of protein hydrogels. The integration of polymersomes-based hybrid structure into the proteinosome compartment and the stimuli-response on enzyme reactions fulfills the requirements of eukaryotic cell biomimetics in complex architectures and allows mimicking cellular transportation processes.

Identifiants

pubmed: 33373089
doi: 10.1002/smll.202005749
doi:

Substances chimiques

Hydrogels 0
Polymers 0
Glucose Oxidase EC 1.1.3.4

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2005749

Informations de copyright

© 2020 The Authors. Small published by Wiley-VCH GmbH.

Références

J. W. Szostak, D. P. Bartel, P. L. Luisi, Nature 2001, 409, 387.
D. A. Fletcher, R. D. Mullins, Nature 2010, 463, 485.
H. Choi, C. D. Montemagno, Nano Lett. 2005, 5, 2538.
J. Gaitzsch, X. Huang, B. Voit, Chem. Rev. 2016, 116, 1053.
J. Liu, V. Postupalenko, S. Lörcher, D. L. Wu, M. Chami, W. Meier, C. G. Palivan, Nano Lett. 2016, 16, 7128.
a) B. C. Buddingh', J. C. M. van Hest, Acc. Chem. Res. 2017, 50, 769;.
b) D. A. Hammer, N. P. Kamat, F. Lett, FEBS Lett. 2012, 586, 2882.
a) S. Deshpande, C. Dekker, Nat. Protoc. 2018, 13, 856;
b) A. N. Wang, J. W. Szostak, Emerging Top. Life Sci. 2019, 3, 537.
M. Li, X. Huang, S. Mann, Small 2014, 10, 3291.
a) T. Y. D. Tang, C. R. C. Hak, A. J. Thompson, M. K. Kuimova, D. S. Williams, A. W. Perriman, S. Mann, Nat. Chem. 2014, 6, 527;
b) J. B. Li, X. M. Liu, L. K. Abdelmohsen, D. S. Williams, X. Huang, Small 2019, 15, 1902893.
a) X. Huang, M. Li, D. C. Green, D. S. Williams, A. J. Patil, S. Mann, Nat. Commun. 2013, 4, 2239;
b) X. L. Wang, X. M. Liu, X. Huang, Adv. Mater. 2020, 32, 2001436;
c) L. Wang, S. D. Song, J. van Hest, L. K. Abdelmohsen, X. Huang, S. Sánchez, Small 2020, 16, 1907680.
Q. Shao, S. D. Zhang, Z. Hu, Y. F. Zhou, Angew. Chem., Int. Ed. 2020, 59, 17125.
X. Yan, T. T. Wang, D. Yao, J. Y. Xu, Q. Luo, J. Q. Liu, Small 2019, 15, 1900350.
M. Marguet, C. Bonduelle, S. Lecommandoux, Chem. Soc. Rev. 2013, 42, 512.
H. X. Chen, W. R. Li, Y. P. Lin, L. Wang, X. M. Liu, X. Huang, Angew. Chem., Int. Ed. 2020, 59,16953.
A. Armada-Moreira, E. Taipaleenmäki, F. Itel, Y. Zhang, B. Städler, Nanoscale 2016, 8, 19510.
X. L. Liu, D. Appelhans, B. Voit, J. Am. Chem. Soc. 2018, 140, 16106.
N. Martin, M. Li, S. Mann, Langmuir 2016, 32, 5881.
X. Huang, A. J. Patil, M. Li, S. Mann, J. Am. Chem. Soc. 2014, 136, 9225.
P. Wen, X. M. Liu, L. Wang, M. Li, Y. D. Huang, X. Huang, S. Mann, Small 2017, 13, 1700467.
L. Rodríguez-Arco, M. Li, S. Mann, Nat. Mater. 2017, 16, 857.
Y. Qiao, M. Li, R. Booth, S. Mann, Nat. Chem. 2017, 9, 110.
C. Y. Zhao, M. Zhu, Y. Fang, X. M. Liu, L. Wang, D. F. Chen, X. Huang, Mater. Horiz. 2020, 7, 157.
A. Belluati, S. Thamboo, A. Najer, V. Maffeis, P. von Claudio, I. Craciun, C. G. Palivan, W. Meier, Adv. Funct. Mater. 2020, 30, 2002949.
X. M. Liu, P. Zhou, Y. D. Huang, M. Li, X. Huang, S. Mann, Angew. Chem., Int. Ed. 2016, 55, 7095.
S. Mann, Acc. Chem. Res. 2011, 45, 2131.
P. Schwille, J. Spatz, K. Landfester, E. Bodenschatz, S. Herminghaus, V. Sourjik, T. J. Erb, P. Bastiaens, R. Lipowsky, A. Hyman, P. Dabrock, J. C. Baret, T. Vidakovic-Koch, P. Bieling, R. Dimova, H. Mutschler, T. Robinson, T. Y. D. Tang, S. Wegner, K. Sundmacher, Angew. Chem., Int. Ed. 2018, 57, 13382.
L. Wang, Y. P. Lin, Y. T. Zhou, H. Xie, S. J. M, M. Li, Y. D. Huang, X. Huang, S. Mann, Angew. Chem., Int. Ed. 2019, 58, 1067.
P. Y. Bolinger, D. Stamou, H. Vogel, Angew. Chem., Int. Ed. 2008, 47, 5544.
Z. P. Wang, M. C. van Oers, F. P. Rutjes, J. C. van Hest, Angew. Chem., Int. Ed. 2012, 51, 10746.
P. Gobbo, A. J. Patil, M. Li, R. Harniman, W. H. Briscoe, S. Mann, Nat. Mater. 2018, 17, 1145.
A. Peyret, E. Ibarboure, N. Pippa, S. Lecommandoux, Langmuir 2017, 33, 7079.
A. F. Mason, N. A. Yewdall, P. L. W. Welzen, J. X. Shao, M. van Stevendaal, J. C. M. van Hest, D. S. Williams, L. K. Abdelmohsen, ACS Cent. Sci. 2019, 5, 1360.
X. L. Liu, P. Formanek, B. Voit, D. Appelhans, Angew. Chem., Int. Ed. 2017, 56, 16233.
J. Gaitzsch, D. Appelhans, L. G. Wang, G. Battaglia, B. Voit, Angew. Chem., Int. Ed. 2012, 51, 4448.
M. J. Webber, E. A. Appel, B. Vinciguerra, A. B. Cortinas, L. S. Thapa, S. Jhunjhunwala, L. Isaacs, R. Langer, D. G. Anderson, Proc. Natl. Acad. Sci. USA 2016, 113, 14189.
D. H. Chou, M. J. Webber, B. C. Tang, A. B. Lin, L. S. Thapa, D. Deng, J. V. Truong, A. B. Cortinas, R. Langer, D. G. Anderson, Proc. Natl. Acad. Sci. USA 2015, 112, 2401.
Y. Z. Gao, Q. Luo, S. P. Qiao, L. Wang, Z. Y. Dong, J. Y. Xu, J. Q. Liu, Angew. Chem., Int. Ed. 2014, 53, 9343.
D. Y. Su, X. M. Liu, L. Wang, C. Ma, H. Xie, H. Zhang, X. H. Meng, Y. D. Huang, X. Huang, Chem. Commun. 2016, 52, 13803.
H. Gumz, S. Boye, B. Iyisan, V. Krönert, P. Formanek, B. Voit, A. Lederer, D. Appelhans, Adv. Sci. 2019, 6, 1801299.
D. Gräfe, J. Gaitzsch, D. Appelhans, B. Voit, Nanoscale 2014, 6, 10752.
M. A. Yassin, D. Appelhans, R. Wiedemuth, P. Formanek, S. Boye, A. Lederer, A. Temme, B. Voit, Small 2015, 11, 1580.
B. Iyisan, J. Kluge, P. Formanek, B. Voit, D. Appelhans, Chem. Mater. 2016, 28, 1513.
H. Gumz, T. H. Lai, B. Voit, D. Appelhans, Polym. Chem. 2017, 8, 2904.
K. Hinds, J. J. Koh, L. Joss, F. Liu, M. Baudys, S. W. Kim, Bioconjugate Chem. 2000, 11, 195.
S. Chen, J. L. Qin, J. Z. Du, Macromolecules 2020, 53, 3978.
L. D. Blackman, S. Varlas, M. C. Arno, Z. H. Houston, N. L. Fletcher, K. J. Thurecht, M. Hasan, M. I. Gibson, R. K. O'Reilly, ACS Cent. Sci. 2018, 4, 718.
C. G. Palivan, O. Fischer-Onaca, M. Delcea, F. Itel, W. Meier, Chem. Soc. Rev. 2012, 41, 2800.
B. Iyisan, A. C. Siedel, H. Gumz, M. Yassin, J. Kluge, J. Gaitzsch, P. Formanek, S. Moreno, B. Voit, D. Appelhans, Macromol. Rapid Commun. 2017, 38, 1700486.
M. Garni, S. Thamboo, C.-A. Schoenenberger, C. G. Palivan, Biochim. Biophys. Acta, Biomembr. 2017, 1859, 619.
S. Moreno, P. Sharan, J. Engelke, H. Gumz, U. Oertel, B. Voit, S. Banerjee, R. Klajn, P. Wang, A. Lederer, D. Appelhans, Small 2020, 16, 2002135.

Auteurs

Ping Wen (P)

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China.

Xueyi Wang (X)

Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany.
Chair of Organic Chemistry of Polymers, Technische Universität Dresden, D-01062, Dresden, Germany.

Silvia Moreno (S)

Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany.

Susanne Boye (S)

Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany.

Dagmar Voigt (D)

Institute for Botany, Faculty of Biology, Technische Universität Dresden, D-01062, Dresden, Germany.

Brigitte Voit (B)

Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany.
Chair of Organic Chemistry of Polymers, Technische Universität Dresden, D-01062, Dresden, Germany.

Xin Huang (X)

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China.

Dietmar Appelhans (D)

Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany.

Articles similaires

Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Animals Osteogenesis Osteoporosis Mesenchymal Stem Cells Humans
Animals Huntington Disease Mitochondria Neurons Mice

Classifications MeSH