Pharmacodynamics-based approach for efficacious human dose projection of BMS-986260, a small molecule transforming growth factor beta receptor 1 inhibitor.


Journal

Biopharmaceutics & drug disposition
ISSN: 1099-081X
Titre abrégé: Biopharm Drug Dispos
Pays: England
ID NLM: 7911226

Informations de publication

Date de publication:
Apr 2021
Historique:
revised: 04 11 2020
received: 07 08 2020
accepted: 01 12 2020
pubmed: 24 12 2020
medline: 15 12 2021
entrez: 23 12 2020
Statut: ppublish

Résumé

Transforming growth factor beta (TGF-β) is a pleiotropic cytokine that has a wide array of biological effects. For decades, tumor biology implicated TGF-β as an attractive therapeutic target due to its immunosuppressive effects. Toward this end, multiple pharmaceutical companies developed a number of drug modalities that specifically target the TGF-β pathway. BMS-986260 is a small molecule, selective TGF-βR1 kinase inhibitor that was under preclinical development for oncology. In vivo studies across mouse, rat, dog, and monkey and cryopreserved hepatocytes predicted human pharmacokinetics (PK) and distribution of BMS-986260. Efficacy studies of BMS-986260 were undertaken in the MC38 murine colon cancer model, and target engagement, as measured by phosphorylation of SMAD2/3, was assessed in whole blood to predict the clinical efficacious dose. The human clearance is predicted to be low, 4.25 ml/min/kg. BMS-986260 provided a durable and robust antitumor response at 3.75 mg/kg daily and 1.88 mg/kg twice-daily dosing regimens. Phosphorylation of SMAD2/3 was 3.5-fold less potent in human monocytes than other preclinical species. Taken together, the projected clinical efficacious dose was 600 mg QD or 210 mg BID for 3 days followed by a 4-day drug holiday. Mechanism-based cardiovascular findings in the rat ultimately led to the termination of BMS-986260. This study describes the preclinical PK characterization and pharmacodynamics-based efficacious dose projection of a novel small molecule TGF-βR1 inhibitor.

Identifiants

pubmed: 33354831
doi: 10.1002/bdd.2256
doi:

Substances chimiques

Protein Kinase Inhibitors 0
Receptor, Transforming Growth Factor-beta Type I EC 2.7.11.30

Types de publication

Comparative Study Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

137-149

Subventions

Organisme : Bristol Myers Squibb

Informations de copyright

© 2020 John Wiley & Sons Ltd.

Références

Akabane, T., Tabata, K., Kadono, K., Sakuda, S., Terashita, S., & Teramura, T. (2010). A comparison of pharmacokinetics between humans and monkeys. Drug Metabolism and Disposition, 38(2), 308-316. https://doi.org/10.1124/dmd.109.028829
Akhurst, R. J. (2017). Targeting TGF-β signaling for therapeutic gain. Cold Spring Harbor Perspectives in Biology, 9(10). https://doi.org/10.1101/cshperspect.a022301
Anderton, M. J., Mellor, H. R., Bell, A., Sadler, C., Pass, M., Powell, S., … Heier, A. (2011). Induction of heart valve lesions by small-molecule ALK5 inhibitors. Toxicologic Pathology, 39(6), 916-924. https://doi.org/10.1177/0192623311416259
Brian Houston, J. (1994). Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochemical Pharmacology, 47(9), 1469-1479. https://doi.org/10.1016/0006-2952(94)90520-7
Brown, R. P., Delp, M. D., Lindstedt, S. L., Rhomberg, L. R., & Beliles, R. P. (1997). Physiological parameter values for physiologically based pharmacokinetic models. Toxicology and Industrial Health, 13(4), 407-484. https://doi.org/10.1177/074823379701300401
Bueno, L., de Alwis, D. P., Pitou, C., Yingling, J., Lahn, M., Glatt, S., & Trocóniz, I. F. (2008). Semi-mechanistic modelling of the tumor growth inhibitory effects of LY2157299, a new type I receptor TGF-β kinase antagonist, in mice. European Journal of Cancer, 44(1), 142-150. https://doi.org/10.1016/j.ejca.2007.10.008
Caja, L., Dituri, F., Mancarella, S., Caballero-Diaz, D., Moustakas, A., Giannelli, G., & Fabregat, I. (2018). TGF-β and the tissue microenvironment: Relevance in fibrosis and cancer. International Journal of Molecular Sciences, 19(5). https://doi.org/10.3390/ijms19051294
Clark, D. A., & Coker, R. (1998). Molecules in focus Transforming growth factor-beta (TGF-β). The International Journal of Biochemistry & Cell Biology, 30(3), 293-298. https://doi.org/10.1016/s1357-2725(97)00128-3
Colak, S., & ten Dijke, P. (2017). Targeting TGF-β signaling in cancer. Trends in Cancer, 3(1), 56-71. https://doi.org/10.1016/j.trecan.2016.11.008
Davies, B., & Morris, T. (1993). Physiological parameters in laboratory animals and humans. Pharmaceutical Research, 10(7), 1093-1095. https://doi.org/10.1023/a:1018943613122
Gueorguieva, I., Cleverly, A. L., Stauber, A., Sada Pillay, N., Rodon, J. A., Miles, C. P., … Lahn, M. M. (2014). Defining a therapeutic window for the novel TGF-β inhibitor LY2157299 monohydrate based on a pharmacokinetic/pharmacodynamic model. British Journal of Clinical Pharmacology, 77(5), 796-807. https://doi.org/10.1111/bcp.12256
Heimbach, T., Lakshminarayana, S. B., Hu, W., & He, H. (2009). Practical anticipation of human efficacious doses and pharmacokinetics using in vitro and preclinical in vivo data. The AAPS Journal, 11(3), 602-614. https://doi.org/10.1208/s12248-009-9136-x
Iwatsubo, T., Hirota, N., Ooie, T., Suzuki, H., Shimada, N., Chiba, K., … Sugiyama, Y. (1997). Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacology & Therapeutics, 73(2), 147-171. https://doi.org/10.1016/S0163-7258(96)00184-2
Levy, L., & Hill, C. S. (2006). Alterations in components of the TGF-β superfamily signaling pathways in human cancer. Cytokine & Growth Factor Reviews, 17(1-2), 41-58. https://doi.org/10.1016/j.cytogfr.2005.09.009
Mahmood, I. (2007). Application of allometric principles for the prediction of pharmacokinetics in human and veterinary drug development. Advanced Drug Delivery Reviews, 59(11), 1177-1192. https://doi.org/10.1016/j.addr.2007.05.015
Massagué, J. (2008). TGFβ in cancer. Cell, 134(2), 215-230. https://doi.org/10.1016/j.cell.2008.07.001
Obach, R. S., Baxter, J. G., Liston, T. E., Silber, B. M., Jones, B. C., Macintyre, F., … Wastall, P. (1997). The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. Journal of Pharmacology and Experimental Therapeutics, 283(1), 46-58.
Pardali, K., & Moustakas, A. (2007). Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1775(1), 21-62. https://doi.org/10.1016/j.bbcan.2006.06.004
Park, B. V., Freeman, Z. T., Ghasemzadeh, A., Chattergoon, M. A., Rutebemberwa, A., Steigner, J., … Cox, A. L. (2016). TGFβ1-mediated SMAD3 enhances PD-1 expression on antigen-specific T cells in cancer. Cancer Discovery, 6(12), 1366-1381. https://doi.org/10.1158/2159-8290.CD-15-1347
Rak, G. D., White, M. R., Augustine-Rauch, K., Newsome, C., Graziano, M. J., & Schulze, G. E. (2020). Intermittent dosing of the transforming growth factor beta receptor 1 inhibitor, BMS-986260, mitigates class-based cardiovascular toxicity in dogs but not rats. Journal of Applied Toxicology, 40(7), 931-946 November 2019. https://doi.org/10.1002/jat.3954
Rodón, J., Carducci, M., Sepulveda-Sánchez, J. M., Azaro, A., Calvo, E., Seoane, J., … Baselga, J. (2015). Pharmacokinetic, pharmacodynamic and biomarker evaluation of transforming growth factor-β receptor I kinase inhibitor, galunisertib, in phase 1 study in patients with advanced cancer. Investigational New Drugs, 33(2), 357-370. https://doi.org/10.1007/s10637-014-0192-4
Seoane, J., & Gomis, R. R. (2017). TGF-β family signaling in tumor suppression and cancer progression. Cold Spring Harbor Perspectives in Biology, 9(12), 117-129. https://doi.org/10.1101/cshperspect.a022277
Stauber, A., Credille, K. M., Truex, L. L., Ehlhardt, W. J., & Young, J. K. (2014). Nonclinical safety evaluation of a transforming growth factor β receptor I kinase inhibitor in Fischer 344 rats and beagle dogs. Journal of Clinical Toxicology, 4(3), 196. https://doi.org/10.4172/2161-0495.196
Velaparthi, U., Darne, C. P., Warrier, J., Liu, P., Rahaman, H., Augustine-Rauch, K., … Borzilleri, R. M. (2020). Discovery of BMS-986260, a potent, selective, and orally bioavailable TGFβR1 inhibitor as an immuno-oncology agent. ACS Medicinal Chemistry Letters, 11(2), 172-178. https://doi.org/10.1021/acsmedchemlett.9b00552
Wajima, T., Yano, Y., Fukumura, K., & Oguma, T. (2004). Prediction of human pharmacokinetic profile in animal scale up based on normalizing time course profiles. Journal of Pharmaceutical Sciences, 93(7), 1890-1900. https://doi.org/10.1002/jps.20099
Yang, L., Pang, Y., & Moses, H. L. (2010). TGF-β and immune cells: An important regulatory axis in the tumor microenvironment and progression. Trends in Immunology, 31(6), 220-227. https://doi.org/10.1016/j.it.2010.04.002
Yingling, J. M., McMillen, W. T., Yan, L., Huang, H., Sawyer, J. S., Graff, J., … Driscoll, K. E. (2018). Preclinical assessment of galunisertib (LY2157299 monohydrate), a first-in-class transforming growth factor-β receptor type I inhibitor. Oncotarget, 9(6), 6659-6677. https://doi.org/10.18632/oncotarget.23795
Yu, X.-Q., & Wilson, A. G. E. (2010). The role of pharmacokinetic and pharmacokinetic/pharmacodynamic modeling in drug discovery and development. Future Medicinal Chemistry, 2(6), 923-928. https://doi.org/10.4155/fmc.10.181
Zou, P., Yu, Y., Zheng, N., Yang, Y., Paholak, H. J., Yu, L. X., & Sun, D. (2012). Applications of human pharmacokinetic prediction in first-in-human dose estimation. The AAPS Journal, 14(2), 262-281. https://doi.org/10.1208/s12248-012-9332-y

Auteurs

Karen E Parrish (KE)

Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA.

Jesse Swanson (J)

Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA.

Lihong Cheng (L)

Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA.

Emily Luk (E)

Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA.

Paul Stetsko (P)

Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA.

James Smalley (J)

Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA.

Yue-Zhong Shu (YZ)

Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA.

Jinwen Huang (J)

Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA.

Jonathan G Pabalan (JG)

Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA.

Yongnian Sun (Y)

Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA.

Tatyana Zvyaga (T)

Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA.

Mary Ellen Cvijic (ME)

Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA.

James Burke (J)

Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA.

Robert Borzilleri (R)

Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA.

Anwar Murtaza (A)

Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA.

Karen Augustine (K)

Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA.

Zheng Yang (Z)

Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH