Tumour acidosis evaluated in vivo by MRI-CEST pH imaging reveals breast cancer metastatic potential.


Journal

British journal of cancer
ISSN: 1532-1827
Titre abrégé: Br J Cancer
Pays: England
ID NLM: 0370635

Informations de publication

Date de publication:
01 2021
Historique:
received: 18 09 2019
accepted: 28 10 2020
revised: 07 10 2020
pubmed: 2 12 2020
medline: 21 4 2021
entrez: 1 12 2020
Statut: ppublish

Résumé

Tumour acidosis is considered to play a central role in promoting cancer invasion and migration, but few studies have investigated in vivo how tumour pH correlates with cancer invasion. This study aims to determine in vivo whether tumour acidity is associated with cancer metastatic potential. Breast cancer cell lines with different metastatic potentials have been characterised for several markers of aggressiveness and invasiveness. Murine tumour models have been developed and assessed for lung metastases and tumour acidosis has been assessed in vivo by a magnetic resonance imaging-based chemical exchange saturation transfer (CEST) pH imaging approach. The higher metastatic potential of 4T1 and TS/A primary tumours, in comparison to the less aggressive TUBO and BALB-neuT ones, was confirmed by the highest expression of cancer cell stem markers (CD44 The findings of this study indicate that the extracellular acidification is associated with the metastatic potential.

Sections du résumé

BACKGROUND
Tumour acidosis is considered to play a central role in promoting cancer invasion and migration, but few studies have investigated in vivo how tumour pH correlates with cancer invasion. This study aims to determine in vivo whether tumour acidity is associated with cancer metastatic potential.
METHODS
Breast cancer cell lines with different metastatic potentials have been characterised for several markers of aggressiveness and invasiveness. Murine tumour models have been developed and assessed for lung metastases and tumour acidosis has been assessed in vivo by a magnetic resonance imaging-based chemical exchange saturation transfer (CEST) pH imaging approach.
RESULTS
The higher metastatic potential of 4T1 and TS/A primary tumours, in comparison to the less aggressive TUBO and BALB-neuT ones, was confirmed by the highest expression of cancer cell stem markers (CD44
CONCLUSIONS
The findings of this study indicate that the extracellular acidification is associated with the metastatic potential.

Identifiants

pubmed: 33257841
doi: 10.1038/s41416-020-01173-0
pii: 10.1038/s41416-020-01173-0
pmc: PMC7782702
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

207-216

Subventions

Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 667510
Organisme : Compagnia di San Paolo (Fondazione Compagnia di San Paolo)
ID : CSTO165925
Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : IG 21468
Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : ID 20153

Commentaires et corrections

Type : CommentIn
Type : CommentIn

Références

Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J. & Thun, M. J. Cancer statistics, 2009. Cancer J. Clin. 59, 225–249 (2009).
doi: 10.3322/caac.20006
Talmadge, J. E. & Fidler, I. J. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 70, 5649–5669 (2010).
pubmed: 20610625 pmcid: 4037932 doi: 10.1158/0008-5472.CAN-10-1040
Weigelt, B., Peterse, J. L. & van ‘t Veer, L. J. Breast cancer metastasis: markers and models. Nat. Rev. Cancer 5, 591–602 (2005).
pubmed: 16056258 doi: 10.1038/nrc1670 pmcid: 16056258
Dong, F., Budhu, A. S. & Wang, X. W. Translating the metastasis paradigm from scientific theory to clinical oncology. Clin. Cancer Res. 15, 2588–2593 (2009).
pubmed: 19351761 pmcid: 2683353 doi: 10.1158/1078-0432.CCR-08-2356
Page, D. L. Prognosis and breast cancer. Recognition of lethal and favorable prognostic types. Am. J. Surg. Pathol. 15, 334–349 (1991).
pubmed: 2006713 doi: 10.1097/00000478-199104000-00002 pmcid: 2006713
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
pubmed: 21376230 pmcid: 21376230 doi: 10.1016/j.cell.2011.02.013
Kakkad, S., Krishnamachary, B., Jacob, D., Pacheco-Torres, J., Goggins, E., Bharti, S. K. et al. Molecular and functional imaging insights into the role of hypoxia in cancer aggression. Cancer Metastasis Rev. https://doi.org/10.1007/s10555-019-09788-3 (2019).
doi: 10.1007/s10555-019-09788-3 pubmed: 30840168 pmcid: 6625878
Gillies, R. J., Robey, I. & Gatenby, R. A. Causes and consequences of increased glucose metabolism of cancers. J. Nucl. Med. 49(Suppl. 2), 24S–42S (2008).
pubmed: 18523064 doi: 10.2967/jnumed.107.047258 pmcid: 18523064
Damaghi, M., Wojtkowiak, J. W. & Gillies, R. J. pH sensing and regulation in cancer. Front. Physiol. 4, 370 (2013).
pubmed: 24381558 pmcid: 3865727 doi: 10.3389/fphys.2013.00370
Viklund, J., Avnet, S. & De Milito, A. Pathobiology and therapeutic implications of tumor acidosis. Curr. Med. Chem. 24, 2827–2845 (2017).
pubmed: 28031009 doi: 10.2174/0929867323666161228142849
Korenchan, D. E. & Flavell, R. R. Spatiotemporal pH heterogeneity as a promoter of cancer progression and therapeutic resistance. Cancers 11, 1026 (2019).
pmcid: 6678451 doi: 10.3390/cancers11071026 pubmed: 6678451
Bhujwalla, Z. M., Artemov, D., Natarajan, K., Ackerstaff, E. & Solaiyappan, M. Vascular differences detected by MRI for metastatic versus nonmetastatic breast and prostate cancer xenografts. Neoplasia 3, 143–153 (2001).
pubmed: 11420750 pmcid: 1505415 doi: 10.1038/sj.neo.7900129
Bharti, S. K., Kakkad, S., Danhier, P., Wildes, F., Penet, M. F., Krishnamachary, B. et al. Hypoxia patterns in primary and metastatic prostate cancer environments. Neoplasia 21, 239–246 (2019).
pubmed: 30639975 pmcid: 6327878 doi: 10.1016/j.neo.2018.12.004
Xu, H. N., Nioka, S., Glickson, J. D., Chance, B. & Li, L. Z. Quantitative mitochondrial redox imaging of breast cancer metastatic potential. J. Biomed. Opt. 15, 036010 (2010).
pubmed: 20615012 pmcid: 3188620 doi: 10.1117/1.3431714
Winnard, P. T. Jr., Pathak, A. P., Dhara, S., Cho, S. Y., Raman, V. & Pomper, M. G. Molecular imaging of metastatic potential. J. Nucl. Med. 49(Suppl. 2), 96S–112S (2008).
pubmed: 18523068 pmcid: 5516907 doi: 10.2967/jnumed.107.045948
Matsuo, M., Matsumoto, S., Mitchell, J. B., Krishna, M. C. & Camphausen, K. Magnetic resonance imaging of the tumor microenvironment in radiotherapy: perfusion, hypoxia, and metabolism. Semin. Radiat. Oncol. 24, 210–217 (2014).
pubmed: 24931096 pmcid: 4060050 doi: 10.1016/j.semradonc.2014.02.002
Chan, K. W., Jiang, L., Cheng, M., Wijnen, J. P., Liu, G., Huang, P. et al. CEST-MRI detects metabolite levels altered by breast cancer cell aggressiveness and chemotherapy response. NMR Biomed. 29, 806–816 (2016).
pubmed: 27100284 pmcid: 4873340 doi: 10.1002/nbm.3526
van der Kemp, W. J. M., van der Velden, T. A., Schmitz, A. M., Gilhuijs, K. G., Luijten, P. R., Klomp, D. W. J. et al. Shortening of apparent transverse relaxation time of inorganic phosphate as a breast cancer biomarker. NMR Biomed. https://doi.org/10.1002/nbm.4011 , e4011 (2018).
Bok, R., Lee, J., Sriram, R., Keshari, K., Sukumar, S., Daneshmandi, S. et al. The role of lactate metabolism in prostate cancer progression and metastases revealed by dual-agent hyperpolarized (13)C MRSI. Cancers 11, 257 (2019).
pmcid: 6406929 doi: 10.3390/cancers11020257 pubmed: 6406929
Hashim, A. I., Zhang, X., Wojtkowiak, J. W., Martinez, G. V. & Gillies, R. J. Imaging pH and metastasis. NMR Biomed. 24, 582–591 (2011).
pubmed: 21387439 pmcid: 3740268 doi: 10.1002/nbm.1644
Anemone, A., Consolino, L., Arena, F., Capozza, M. & Longo, D. L. Imaging tumor acidosis: a survey of the available techniques for mapping in vivo tumor pH. Cancer Metastasis Rev. 38, 25–49 (2019).
pubmed: 30762162 pmcid: 6647493 doi: 10.1007/s10555-019-09782-9
Longo, D. L., Dastru, W., Digilio, G., Keupp, J., Langereis, S., Lanzardo, S. et al. Iopamidol as a responsive MRI-chemical exchange saturation transfer contrast agent for pH mapping of kidneys: In vivo studies in mice at 7 T. Magn. Reson. Med. 65, 202–211 (2011).
pubmed: 20949634 doi: 10.1002/mrm.22608
Longo, D. L., Sun, P. Z., Consolino, L., Michelotti, F. C., Uggeri, F. & Aime, S. A general MRI-CEST ratiometric approach for pH imaging: demonstration of in vivo pH mapping with iobitridol. J. Am. Chem. Soc. 136, 14333–14336 (2014).
pubmed: 25238643 pmcid: 4210149 doi: 10.1021/ja5059313
Chen, L. Q., Howison, C. M., Jeffery, J. J., Robey, I. F., Kuo, P. H. & Pagel, M. D. Evaluations of extracellular pH within in vivo tumors using acidoCEST MRI. Magn. Reson. Med. 72, 1408–1417 (2014).
pubmed: 24281951 doi: 10.1002/mrm.25053
Longo, D. L., Bartoli, A., Consolino, L., Bardini, P., Arena, F., Schwaiger, M. et al. In vivo imaging of tumor metabolism and acidosis by combining PET and MRI-CEST pH imaging. Cancer Res. 76, 6463–6470 (2016).
pubmed: 27651313 pmcid: 27651313 doi: 10.1158/0008-5472.CAN-16-0825
Anemone, A., Consolino, L., Conti, L., Reineri, F., Cavallo, F., Aime, S. et al. In vivo evaluation of tumour acidosis for assessing the early metabolic response and onset of resistance to dichloroacetate by using magnetic resonance pH imaging. Int. J. Oncol. 51, 498–506 (2017).
pubmed: 28714513 doi: 10.3892/ijo.2017.4029
Albatany, M., Li, A., Meakin, S. & Bartha, R. Dichloroacetate induced intracellular acidification in glioblastoma: in vivo detection using AACID-CEST MRI at 9.4 Tesla. J. Neurooncol. 136, 255–262 (2018).
pubmed: 29143921 doi: 10.1007/s11060-017-2664-9
Akhenblit, P. J. & Pagel, M. D. Recent advances in targeting tumor energy metabolism with tumor acidosis as a biomarker of drug efficacy. J. Cancer Sci. Ther. 8, 20–29 (2016).
pubmed: 26962408 pmcid: 4780427 doi: 10.4172/1948-5956.1000382
McVicar, N., Li, A. X., Meakin, S. O. & Bartha, R. Imaging chemical exchange saturation transfer (CEST) effects following tumor-selective acidification using lonidamine. NMR Biomed. 28, 566–575 (2015).
pubmed: 25808190 doi: 10.1002/nbm.3287
Anemone, A., Consolino, L. & Longo, D. L. MRI-CEST assessment of tumour perfusion using X-ray iodinated agents: comparison with a conventional Gd-based agent. Eur. Radiol. 27, 2170–2179 (2017).
pubmed: 27572810 doi: 10.1007/s00330-016-4552-7 pmcid: 27572810
Longo, D. L., Michelotti, F., Consolino, L., Bardini, P., Digilio, G., Xiao, G. et al. In vitro and in vivo assessment of nonionic iodinated radiographic molecules as chemical exchange saturation transfer magnetic resonance imaging tumor perfusion agents. Invest. Radiol. 51, 155–162 (2016).
pubmed: 26460826 doi: 10.1097/RLI.0000000000000217 pmcid: 26460826
Jones, K. M., Randtke, E. A., Yoshimaru, E. S., Howison, C. M., Chalasani, P., Klein, R. R. et al. Clinical translation of tumor acidosis measurements with AcidoCEST MRI. Mol. Imaging Biol. 19, 617–625 (2017).
pubmed: 27896628 pmcid: 6010170 doi: 10.1007/s11307-016-1029-7
Lanzardo, S., Conti, L., Rooke, R., Ruiu, R., Accart, N., Bolli, E. et al. Immunotargeting of antigen xCT attenuates stem-like cell behavior and metastatic progression in breast cancer. Cancer Res. 76, 62–72 (2016).
pubmed: 26567138 doi: 10.1158/0008-5472.CAN-15-1208 pmcid: 26567138
Pulaski, B. A. & Ostrand-Rosenberg, S. in Current Protocols Immunology (eds Coligan, J. E. et al.), Chapter 20, Unit 20.2 (2001).
Nanni, P., de Giovanni, C., Lollini, P. L., Nicoletti, G. & Prodi, G. TS/A: a new metastasizing cell line from a BALB/c spontaneous mammary adenocarcinoma. Clin. Exp. Metastasis 1, 373–380 (1983).
pubmed: 6546207 doi: 10.1007/BF00121199 pmcid: 6546207
Corbet, C., Draoui, N., Polet, F., Pinto, A., Drozak, X., Riant, O. et al. The SIRT1/HIF2alpha axis drives reductive glutamine metabolism under chronic acidosis and alters tumor response to therapy. Cancer Res. 74, 5507–5519 (2014).
pubmed: 25085245 doi: 10.1158/0008-5472.CAN-14-0705 pmcid: 25085245
Wyart, E., Reano, S., Hsu, M. Y., Longo, D. L., Li, M., Hirsch, E. et al. Metabolic alterations in a slow-paced model of pancreatic cancer-induced wasting. Oxid. Med. Cell. Longev. 2018, 6419805 (2018).
pubmed: 29682162 pmcid: 5846462 doi: 10.1155/2018/6419805
Hynes, J., O’Riordan, T. C., Zhdanov, A. V., Uray, G., Will, Y. & Papkovsky, D. B. In vitro analysis of cell metabolism using a long-decay pH-sensitive lanthanide probe and extracellular acidification assay. Anal. Biochem. 390, 21–28 (2009).
pubmed: 19379702 doi: 10.1016/j.ab.2009.04.016 pmcid: 19379702
Quaglino, E. & Cavallo, F. Immunological prevention of spontaneous tumors: a new prospect? Immunol. Lett. 80, 75–79 (2002).
Conti, L., Lanzardo, S., Arigoni, M., Antonazzo, R., Radaelli, E., Cantarella, D. et al. The noninflammatory role of high mobility group box 1/Toll-like receptor 2 axis in the self-renewal of mammary cancer stem cells. FASEB J. 27, 4731–4744 (2013).
pubmed: 23970797 doi: 10.1096/fj.13-230201 pmcid: 23970797
Charafe-Jauffret, E., Ginestier, C., Iovino, F., Wicinski, J., Cervera, N., Finetti, P. et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 69, 1302–1313 (2009).
pubmed: 19190339 pmcid: 2819227 doi: 10.1158/0008-5472.CAN-08-2741
Senbanjo, L. T. & Chellaiah, M. A. CD44: a multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front. Cell Dev. Biol. 5, 18 (2017).
pubmed: 28326306 pmcid: 5339222 doi: 10.3389/fcell.2017.00018
Hulikova, A., Aveyard, N., Harris, A. L., Vaughan-Jones, R. D. & Swietach, P. Intracellular carbonic anhydrase activity sensitizes cancer cell pH signaling to dynamic changes in CO2 partial pressure. J. Biol. Chem. 289, 25418–25430 (2014).
pubmed: 25059669 pmcid: 4162147 doi: 10.1074/jbc.M114.547844
Moellering, R. E., Black, K. C., Krishnamurty, C., Baggett, B. K., Stafford, P., Rain, M. et al. Acid treatment of melanoma cells selects for invasive phenotypes. Clin. Exp. Metastasis 25, 411–425 (2008).
pubmed: 18301995 doi: 10.1007/s10585-008-9145-7 pmcid: 18301995
Robey, I. F., Baggett, B. K., Kirkpatrick, N. D., Roe, D. J., Dosescu, J., Sloane, B. F. et al. Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res. 69, 2260–2268 (2009).
pubmed: 19276390 pmcid: 2834485 doi: 10.1158/0008-5472.CAN-07-5575
Walenta, S., Wetterling, M., Lehrke, M., Schwickert, G., Sundfor, K., Rofstad, E. K. et al. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res. 60, 916–921 (2000).
pubmed: 10706105 pmcid: 10706105
Aboagye, E. O., Mori, N. & Bhujwalla, Z. M. Effect of malignant transformation on lactate levels of human mammary epithelial cells. Adv. Enzym. Regul. 41, 251–260 (2001).
doi: 10.1016/S0065-2571(00)00019-4
Pillai, S. R., Damaghi, M., Marunaka, Y., Spugnini, E. P., Fais, S. & Gillies, R. J. Causes, consequences, and therapy of tumors acidosis. Cancer Metastasis Rev. 38, 205–222 (2019).
pubmed: 30911978 pmcid: 6625890 doi: 10.1007/s10555-019-09792-7
Swietach, P. What is pH regulation, and why do cancer cells need it? Cancer Metastasis Rev. 38, 5–15 (2019).
pubmed: 30707328 pmcid: 6626545 doi: 10.1007/s10555-018-09778-x
Andersen, A. P., Flinck, M., Oernbo, E. K., Pedersen, N. B., Viuff, B. M. & Pedersen, S. F. Roles of acid-extruding ion transporters in regulation of breast cancer cell growth in a 3-dimensional microenvironment. Mol. Cancer 15, 45 (2016).
pubmed: 27266704 pmcid: 4896021 doi: 10.1186/s12943-016-0528-0
Fais, S. Evidence-based support for the use of proton pump inhibitors in cancer therapy. J. Transl. Med. 13, 368 (2015).
pubmed: 26597250 pmcid: 4657328 doi: 10.1186/s12967-015-0735-2
Faubert, B., Li, K. Y., Cai, L., Hensley, C. T., Kim, J., Zacharias, L. G. et al. Lactate metabolism in human lung tumors. Cell 171, 358–371 e359 (2017).
pubmed: 28985563 pmcid: 5684706 doi: 10.1016/j.cell.2017.09.019
Gatenby, R. A., Gawlinski, E. T., Gmitro, A. F., Kaylor, B. & Gillies, R. J. Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res. 66, 5216–5223 (2006).
pubmed: 16707446 doi: 10.1158/0008-5472.CAN-05-4193
Ji, K., Mayernik, L., Moin, K. & Sloane, B. F. Acidosis and proteolysis in the tumor microenvironment. Cancer Metastasis Rev. 38, 103–112 (2019).
pubmed: 31069574 pmcid: 6886241 doi: 10.1007/s10555-019-09796-3
Chen, L. Q., Randtke, E. A., Jones, K. M., Moon, B. F., Howison, C. M. & Pagel, M. D. Evaluations of tumor acidosis within in vivo tumor models using parametric maps generated with AcidoCEST MRI. Mol. Imaging Biol. https://doi.org/10.1007/s11307-014-0816-2 (2015).
doi: 10.1007/s11307-014-0816-2 pubmed: 25962973 pmcid: 5218587
Wang, L., Fan, Z., Zhang, J., Changyi, Y., Huang, C., Gu, Y. et al. Evaluating tumor metastatic potential by imaging intratumoral acidosis via pH-activatable near-infrared fluorescent probe. Int. J. Cancer 136, E107–E116 (2015).
pubmed: 25155456 doi: 10.1002/ijc.29153
Rohani, N., Hao, L., Alexis, M. S., Joughin, B. A., Krismer, K., Moufarrej, M. N. et al. Acidification of tumor at stromal boundaries drives transcriptome alterations associated with aggressive phenotypes. Cancer Res. 79, 1952–1966 (2019).
pubmed: 30755444 pmcid: 6467770 doi: 10.1158/0008-5472.CAN-18-1604
Demoin, D. W., Wyatt, L. C., Edwards, K. J., Abdel-Atti, D., Sarparanta, M., Pourat, J. et al. PET imaging of extracellular pH in tumors with (64)Cu- and (18)F-labeled pHLIP peptides: a structure-activity optimization study. Bioconjugate Chem. 27, 2014–2023 (2016).
doi: 10.1021/acs.bioconjchem.6b00306
Nimmagadda, S., Pullambhatla, M., Stone, K., Green, G., Bhujwalla, Z. M. & Pomper, M. G. Molecular imaging of CXCR4 receptor expression in human cancer xenografts with [64Cu]AMD3100 positron emission tomography. Cancer Res. 70, 3935–3944 (2010).
pubmed: 20460522 pmcid: 2874192 doi: 10.1158/0008-5472.CAN-09-4396
Martinez, G. V., Zhang, X., Garcia-Martin, M. L., Morse, D. L., Woods, M., Sherry, A. D. et al. Imaging the extracellular pH of tumors by MRI after injection of a single cocktail of T1 and T2 contrast agents. NMR Biomed. 24, 1380–1391 (2011).
pubmed: 21604311 pmcid: 3693774 doi: 10.1002/nbm.1701
Lutz, N. W., Le Fur, Y., Chiche, J., Pouyssegur, J. & Cozzone, P. J. Quantitative in vivo characterization of intracellular and extracellular pH profiles in heterogeneous tumors: a novel method enabling multiparametric pH analysis. Cancer Res. 73, 4616–4628 (2013).
pubmed: 23752692 doi: 10.1158/0008-5472.CAN-13-0767
Chen, L. Q., Randtke, E. A., Jones, K. M., Moon, B. F., Howison, C. M. & Pagel, M. D. Evaluations of tumor acidosis within in vivo tumor models using parametric maps generated with Acido CEST MRI. Mol. Imaging Biol. 17, 488–496 (2015).
pubmed: 25622809 pmcid: 4880367 doi: 10.1007/s11307-014-0816-2
Consolino, L., Anemone, A., Capozza, M., Carella, A., Irrera, P., Corrado, A. et al. Non-invasive investigation of tumor metabolism and acidosis by MRI-CEST imaging. Front. Oncol. 10, 161 (2020).
pubmed: 32133295 pmcid: 7040491 doi: 10.3389/fonc.2020.00161
Voss, N. C. S., Dreyer, T., Henningsen, M. B., Vahl, P., Honore, B. & Boedtkjer, E. Targeting the acidic tumor microenvironment: unexpected pro-neoplastic effects of oral NaHCO3 therapy in murine breast tissue. Cancers 12, 891 (2020).
pmcid: 7226235 doi: 10.3390/cancers12040891 pubmed: 7226235
Kolosenko, I., Avnet, S., Baldini, N., Viklund, J. & De Milito, A. Therapeutic implications of tumor interstitial acidification. Semin. Cancer Biol. 43, 119–133 (2017).
pubmed: 28188829 doi: 10.1016/j.semcancer.2017.01.008

Auteurs

Annasofia Anemone (A)

Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Via Nizza 52, Torino, Italy.

Lorena Consolino (L)

Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Via Nizza 52, Torino, Italy.

Laura Conti (L)

Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino, Italy.

Pietro Irrera (P)

University of Campania "Luigi Vanvitelli", Viale Abramo Lincoln, 5, Caserta, Italy.

Myriam Y Hsu (MY)

Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Via Nizza 52, Torino, Italy.

Daisy Villano (D)

Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Via Nizza 52, Torino, Italy.

Walter Dastrù (W)

Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Via Nizza 52, Torino, Italy.

Paolo E Porporato (PE)

Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino, Italy.

Federica Cavallo (F)

Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino, Italy.

Dario Livio Longo (DL)

Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Via Nizza 52, Torino, Italy. dariolivio.longo@cnr.it.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH