Is THP-1 viability affected by the crystallinity of nanostructured carbonated hydroxyapatites?
cell adhesion
cell viability
hydroxyapatite
macrophages
reactive oxygen species
Journal
Journal of biomedical materials research. Part A
ISSN: 1552-4965
Titre abrégé: J Biomed Mater Res A
Pays: United States
ID NLM: 101234237
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
revised:
04
10
2020
received:
07
02
2020
accepted:
09
10
2020
pubmed:
14
10
2020
medline:
18
1
2022
entrez:
13
10
2020
Statut:
ppublish
Résumé
In daily clinical practice, there is a notable variety of synthetic bone substitute, with various resorption rates, different chemical and structural characteristics that influence on bone regeneration and are not suitable for every clinical use. New biomaterials based on nanotechnology have been developed to be bioabsorbable as new bone is formed. This study intends to evaluate THP-1 cell viability when exposed to extracts of unsintered nanostructured carbonated hydroxyapatite (cHA) microspheres processed at 5 and 37°C compared to sintered hydroxyapatite processed at 90°C. cHA shows, in previous studies, biocompatibility, and better bioabsorption rates, consequently, improve the deposition of new bone and tissue repair. The results demonstrated that the tested biomaterials did not activate inflammatory role through THP-1 cells and did not affect activated macrophages independently of their crystallinities, suggesting their safety and biocompatibility. These results are of fundamental importance for the advancement of research on smart materials, especially in what controls the effect of nanostructured cHA microspheres in the biological environment, seems to be a promising biomaterial in clinical application on regenerative medicine.
Substances chimiques
Biocompatible Materials
0
Carbonates
0
Durapatite
91D9GV0Z28
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1266-1274Informations de copyright
© 2020 Wiley Periodicals LLC.
Références
Fischer CR, Cassilly R, Cantor EE, Hammouri Q, Errico T. A systematic review of comparative studies on bone graft alternatives for common spine fusion procedures. Eur Spine J. 2013;22:1423-1435.
Artas G, Gul M, Acikan I, et al. A comparison of different bone graft materials in peri-implant guided bone regeneration. Braz Oral Res. 2018;32:e59.
Carmo ABXD, Sartoretto SC, Alves ATN, et al. Alveolar bone repair with strontium- containing nanostructured carbonated hydroxyapatite. J Appl Oral Sci. 2018;26:e20170084.
Martinez-Zelaya VR, Zarranz L, Herrera EZ, et al. In vitro and in vivo evaluations of nanocrystalline Zn-doped carbonated hydroxyapatite/alginate microspheres: zinc and calcium bioavailability and bone regeneration. Int J Nanomedicine. 2019;10(14):3471-3490.
Stumbras A, Kuliesius P, Januzis G, Juodzbalys G. Alveolar ridge preservation after tooth extraction using different bone graft materials and autologous platelet concentrates: a systematic review. J Oral Maxillofac Res. 2019;10(1):2.
Walsh WR, Oliver RA, Christou C, et al. Critical size bone defect healing using collagen-calcium phosphate bone graft materials. PLoS One. 2017;12(1):e0168883.
Calasans-Maia MD, Calasans-Maia J, Santos S, et al. Short-term in vivo evaluation of zinc-containing calcium phosphate using a normalized procedure. Mater Sci Eng C. 2014;41:309-319.
Wopenka B, Pasteris JD. A mineralogical perspective on the apatite in bone. Mater Sci Eng. 2005;25:131-143.
Resende RFB, Fernandes GVO, Santos SRA, et al. Long-term biocompatibility evaluation of 0.5% zinc containing hydroxyapatite in rabbits. J Mater Med. 2013;24:1455-1463.
Landi E, Celotti G, Logroscino G, Tampieri A. Carbonated hydroxyapatite as bone substitute. J Ceram Soc. 2003;23:2931-2937.
Valiense H, Barreto M, Resende RF, et al. In vitro and in vivo evaluation of stroncium-containing nanostructured carbonated hydroxyapatite/sodium alginate for sinus lift in rabbis. J Biomed Mater Res Appl Biomater. 2015;104:274-282.
Silva AAP, Alves ATNN, Sartoretto SC, Calasans-Maia JA, Granjeiro C-MMD. Physico-chemical and histomorphometric evaluation of zinc-containing hydroxyapatite in rabbits. Calvaria Braz Dent J. 2016;27:717-726.
Calasans-Maia MD, Melo BR, Alves AT, et al. Cytocompatibility and biocompatibility of nanostructured carbonated hydroxyapatite spheres for bone repair. J Appl Oral Sci. 2015;23(6):599-608.
Cezar I, Kammer G, Alves AT, et al. Standardized study of carbonate apatite as bone substitute in rabbit's tibia. Key Eng Mat. 2012;493-494:242-246.
Kalia P, Vizcay-Barrena G, Fan JP, Warley A, Di Silvio L. Nanohydroxyapatite shape and its potential role in bone formation: an analytical study. J R Soc Interface. 2014;11(93):20140004.
Karadizic I, Vucic V, Jokanovik V, et al. Effects of novel hydroxyapatite-based 3D biomaterials on proliferation and osteoblastic differentiation of mesenchymal stem cells. J Biomed Mater Res Part A. 2015;103:350-357.
Li B, Chen X, Guo B, Wang X, Fan H, Zhang X. Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramic with a nanostructure. Acta Biomater. 2009;5(1):134-143.
Xu Z, Liu C, Wei J, Sun J. Effects of four types of hydroxyapatite nanoparticules with different nanocrystal morphologies and sizes on apoptosis in rat osteoblasts. J Appl Toxicol. 2011;32:429-435.
Mavropoulos E, Hausen M, Costa AM, et al. Biocompatibility of carbonated hydroxyapatite nanoparticles with different crystallinities. Key Eng Mat. 2012;493-494:331-336.
Xue C, Chen Y, Huang Y, Zhu P. Hydrothermal syntesis and biocompatibility study of highly crystalline carbonated hydroxyapatite nanorods. Nanoscale Res Lett. 2015;10:2-6.
Barros E, Alvarenga J, Alves GG, et al. In vivo and in vitro biocompatibility study of nanostructured carbonated-apatite. Key Eng Mat. 2012;493-494:247-251.
Jebahi S, Saoudi M, Badraoui R, et al. Biologic response to carbonated hydrxyapatyte associated with orthopedic device: experimental study in a rabbit model. Korean J Pathol. 2012;46(1):48-54.
Lala S, Brahmachari S, Das PK, Das D, Kar T, Pradhan SK. Biocompatible nanocrystalline natural bonelike carbonates hydroxyapatite synthesized by mechanical alloying in a record minimum time. Mater Sci Eng C. 2014;42:647-656.
Lafon JP, Champion E, Bernache-Assollant D. Processing of AB type carbonated hydroxyapatite Ca10-x(PO4)6-x(CO3)x(OH)2-x-2y(CO3)y. J Eur Ceram Soc. 2008;28:139-147.
Guol L, Huang M, Zhang X. Effect of sintering temperature on structure of hydroxyapatite studied with Rietveld method. Mater Sci Mater Med. 2003;14:817-822.
Lima IR, Alves GG, Soriano CA, et al. Understanding the impact of divalent cation substitution on hydroxyapatite: an in vitro multiparametric study on biocompatibility. J Biomed Mater Res A. 2011;98:351-358.
Remya NS, Syama S, Gayathri V, Varma HK, Mohanan PV. An in vitro study on the interaction of hydroxyapatite nanoparticles and bone marrow mesenchymal stem cells for assessing the toxicological behavior. Colloids Surf B Biointerfaces. 2014;117:389-397.
Aldo PB, Craveiro V, Guller S, Gil M. Effect of culture on the phenotype of THP-1 monocyte cell line. Am J Reprod Immunol. 2013;70(1):80-86.
Paget V, Dekali S, Kortulewski T, et al. Specific uptake and genotoxicity induced by polystyrene nanobeads with distint surface chemistry on human lung epithelial cells and macrophages. PloS One. 2015;15:1-20.
Xu H, Sun Y, Zhang Y, et al. Protoporphyrin IX induces a necrotic cell death in human THP-1 macrophages through activation of reactive oxygen species/c-Jun N-terminal protein kinase pathway and opening of mitochondrial permeability transition pore. Cell Physiol Biochem. 2014;34:1835-1848.
Albulescu R, Popa A, Enciu A, et al. Comprehensive in vitro testing of calcium phosphate-based bioceramics with orthopedic and dentistry applications. Materials. 2019;12(22):3704.
Ingham E, Fisher J. The role of the macrophages in osteolysis od total joint replacement. Biomaterials. 2005;26:1271-1286.
Herten M, Rothamel D, Schwarz F, Friesen KG, Becker J. Surface and nanosurface dependent in vitro effects of bone substitutes on cell viability. Clin Oral Investig. 2009;13:149-155.
Mealy J, O'Kelly K. Cell response to hydroxyapatite surface topography modulated by sintering temperature. J Biomed Mater Res. 2015;103(11):3533-3538.
Iafisco M, Sabatino P, Lesci IG, Prat M, Rimondini L, Roveri N. Conformational modifications of serum albumins adsorbed on different kinds of biomimetic hydroxyapatite nanocrystals. Colloids Surf B Biointerfaces. 2010;81(1):274-2784.
Tsang EJ, Arakawa CK, Zuk PA, Wu BM. Osteoblasts interactions within a biomimetic apatite microenvironment. Ann Biomed Eng. 2011;39(4):1186-1200.
Mavropoulos E, Costa AM, Costa LT, et al. Adsorption and bioactivity studies of albumin onto hydroxyapatite surface. Colloids Surf B Biointerfaces. 2011;83:1-9.
Kusterman S, Boess F, Buness A, et al. A label-free, impedance-based real time assay to identify drug-induced toxicities and differentiate cytostatic from cytotoxic effects. Toxicol In Vitro. 2013;27(5):1589-1595.
Coolins A, Annangi B, Rubio L, et al. High throughput toxicity screening and intracellular detection of nanomaterials. WIREs Nanomed Nanobiotechnol. 2017;9(1):1413.
Kho D, Mac Donald C, Johnson R, et al. Application of xCELLingence RTCA biosensor technology for revealing the profile and window of drug responsiveness in real time. Biosensors. 2015;5:199-122.
Grubb JDL, Lawen A. The mitochondrial membrane potential in apoptosis; as update. Apoptosis. 2003;8:115-128.
Alcaide M, Serrano MC, Pagani R, Sánchez-Salcedo S, ValletRegí M, Portolés MT. Biocompatibility markers for the study of interactions between osteoblasts and composite biomaterials. Biomaterials. 2009;30(1):45-45, 51.
Wepener I, Richter W, Van Papendorp D, Joubert AM. In vitro osteoclast-like and osteoblast cells' response to electrospun calcium phosphate biphasic candidate scaffolds for bone tissue engineering. J Mater Sci Mater Med. 2012;23(12):3029-3040.
Karamohamed S, Guidotti G. Bioluminometric method for real-time detection of ATPase activity. BioTechniques. 2001;31:420-425.
Fraga H. Firefly luminescence: a historical perspective and recent development. Photochem Photobiol Sci. 2008;7(2):146-159.
Carafoli E. The fateful encounter of mitochondria with calcium: how did it happen? Biochimi Biophys Acta. 2010;1797(6-7):595-606.
Brüne B, Dehne N, Grossmann N, et al. Redox control of inflammation in macrophages. Antioxid Redox Signal. 2013;19(6):595-637.
Yoshikawa T, Naito Y. What is oxidative stress? J Japan Med Assoc. 2000;124:1549-1553.
Douard N, Leclerc L, Sarry G, et al. Impact of the chemical composition of poly-substituted hydroxyapatite particles on the in vitro pro-inflamatory response of macrophages. Biomed Microdevices. 2016;18:27.
Valappil MP, Santhakumar S, Arumugam S. Determination of oxidative stress related toxicity on repeated dermal exposure of hydroxyapatite nanoparticles in rats. Int J Biomater. 2014;2014:1-8.
Deng Y, Sun Y, Chen X, Zhu P, Wei S. Biomimetic synthesis and biocompatibility evaluation of carbonated apatites template-mediated by heparin. Mater Sci Eng C. 2013;33(5):2905-2913.