The structure of a calsequestrin filament reveals mechanisms of familial arrhythmia.


Journal

Nature structural & molecular biology
ISSN: 1545-9985
Titre abrégé: Nat Struct Mol Biol
Pays: United States
ID NLM: 101186374

Informations de publication

Date de publication:
12 2020
Historique:
received: 25 07 2019
accepted: 19 08 2020
pubmed: 14 10 2020
medline: 10 2 2021
entrez: 13 10 2020
Statut: ppublish

Résumé

Mutations in the calcium-binding protein calsequestrin cause the highly lethal familial arrhythmia catecholaminergic polymorphic ventricular tachycardia (CPVT). In vivo, calsequestrin multimerizes into filaments, but there is not yet an atomic-resolution structure of a calsequestrin filament. We report a crystal structure of a human cardiac calsequestrin filament with supporting mutational analysis and in vitro filamentation assays. We identify and characterize a new disease-associated calsequestrin mutation, S173I, that is located at the filament-forming interface, and further show that a previously reported dominant disease mutation, K180R, maps to the same surface. Both mutations disrupt filamentation, suggesting that disease pathology is due to defects in multimer formation. An ytterbium-derivatized structure pinpoints multiple credible calcium sites at filament-forming interfaces, explaining the atomic basis of calsequestrin filamentation in the presence of calcium. Our study thus provides a unifying molecular mechanism through which dominant-acting calsequestrin mutations provoke lethal arrhythmias.

Identifiants

pubmed: 33046906
doi: 10.1038/s41594-020-0510-9
pii: 10.1038/s41594-020-0510-9
pmc: PMC7718342
mid: NIHMS1622371
doi:

Substances chimiques

CASQ1 protein, human 0
CASQ2 protein, human 0
Calcium-Binding Proteins 0
Calsequestrin 0
Mitochondrial Proteins 0
Recombinant Proteins 0
Calcium SY7Q814VUP

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

1142-1151

Subventions

Organisme : NHLBI NIH HHS
ID : F30 HL137329
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM124149
Pays : United States
Organisme : NHLBI NIH HHS
ID : DP2 HL123228
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM007618
Pays : United States
Organisme : NIGMS NIH HHS
ID : P30 GM124169
Pays : United States

Références

Bers, D. M. Macromolecular complexes regulating cardiac ryanodine receptor function. J. Mol. Cell. Cardiol. 37, 417–429 (2004).
pubmed: 15276012
Royer, L. & Ríos, E. Deconstructing calsequestrin. Complex buffering in the calcium store of skeletal muscle. J. Physiol. 587, 3101–3111 (2009).
pubmed: 19403601 pmcid: 2727020
Guerrero-Hernández, A. et al. in Calcium Signaling (ed Islam, M. S.) 337–370 (Springer International Publishing, 2020).
MacLennan, D. H. & Wong, P. T. Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc. Natl Acad. Sci. USA 68, 1231–1235 (1971).
pubmed: 4256614
MacLennan, D. H. Isolation of a second form of calsequestrin. J. Biol. Chem. 249, 980–984 (1974).
pubmed: 4204555
Ostwald, T. J. & MacLennan, D. H. Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J. Biol. Chem. 249, 974–979 (1974).
pubmed: 4272851
Costello, B. et al. Characterization of the junctional face membrane from terminal cisternae of sarcoplasmic reticulum. J. Cell Biol. 103, 741–753 (1986).
pubmed: 2943746
Franzini-Armstrong, C., Kenney, L. J. & Varriano-Marston, E. The structure of calsequestrin in triads of vertebrate skeletal muscle: a deep-etch study. J. Cell Biol. 105, 49–56 (1987).
pubmed: 3497158
Wang, S. et al. Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum. Nat. Struct. Biol. 5, 476–483 (1998).
pubmed: 9628486
Park, H. et al. Comparing skeletal and cardiac calsequestrin structures and their calcium binding: a proposed mechanism for coupled calcium binding and protein polymerization. J. Biol. Chem. 279, 18026–18033 (2004).
pubmed: 14871888
Knollmann, B. C. et al. Casq2 deletion causes sarcoplasmic reticulum volume increase, premature Ca
pubmed: 16932808 pmcid: 1551934
Perni, S., Close, M. & Franzini-Armstrong, C. Novel details of calsequestrin gel conformation in situ. J. Biol. Chem. 288, 31358–31362 (2013).
pubmed: 24025332 pmcid: 3829449
Milstein, M. L., Houle, T. D. & Cala, S. E. Calsequestrin isoforms localize to different ER sub-compartments: evidence for polymer and heteropolymer-dependent localization. Exp. Cell Res. 315, 523–534 (2009).
pubmed: 19059396
McFarland, T. P., Milstein, M. L. & Cala, S. E. Rough endoplasmic reticulum to junctional sarcoplasmic reticulum trafficking of calsequestrin in adult cardiomyocytes. J. Mol. Cell. Cardiol. 49, 556–564 (2010).
pubmed: 20595002 pmcid: 2932759
Knollmann, B. C. A “rough” journey to the sarcoplasmic reticulum—implications of altered calsequestrin trafficking for cardiac arrhythmia. J. Mol. Cell. Cardiol. 49, 554–555 (2010).
pubmed: 20603128 pmcid: 2932775
Sanchez, E. J., Lewis, K. M., Munske, G. R., Nissen, M. S. & Kang, C. Glycosylation of skeletal calsequestrin: implications for its function. J. Biol. Chem. 287, 3042–3050 (2012).
pubmed: 22170046
Kirchhefer, U. et al. The human CASQ2 mutation K206N is associated with hyperglycosylation and altered cellular calcium handling. J. Mol. Cell. Cardiol. 49, 95–105 (2010).
pubmed: 20302875
Zhang, L., Kelley, J., Schmeisser, G., Kobayashi, Y. M. & Jones, L. R. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J. Biol. Chem. 272, 23389–23397 (1997).
pubmed: 9287354
Rani, S., Park, C. S., Sreenivasaiah, P. K. & Kim, D. H. Characterization of Ca
pubmed: 26674963
Handhle, A. et al. Calsequestrin interacts directly with the cardiac ryanodine receptor luminal domain. J. Cell Sci. 129, 3983–3988 (2016).
Lewis, K. M., Ronish, L. A., Ríos, E. & Kang, C. Characterization of two human skeletal calsequestrin mutants implicated in malignant hyperthermia and vacuolar aggregate myopathy. J. Biol. Chem. 290, 28665–28674 (2015).
pubmed: 26416891 pmcid: 4661382
Bal, N. C. et al. The catecholaminergic polymorphic ventricular tachycardia mutation R33Q disrupts the N-terminal structural motif that regulates reversible calsequestrin polymerization. J. Biol. Chem. 285, 17188–17196 (2010).
pubmed: 20353949 pmcid: 2878038
Bal, N. C. et al. Probing cationic selectivity of cardiac calsequestrin and its CPVT mutants. Biochem. J. 435, 391–399 (2011).
pubmed: 21265816
Gray, B. et al. A novel heterozygous mutation in cardiac calsequestrin causes autosomal dominant catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 13, 1652–1660 (2016).
pubmed: 27157848 pmcid: 5453511
Kim, E. et al. Characterization of human cardiac calsequestrin and its deleterious mutants. J. Mol. Biol. 373, 1047–1057 (2007).
pubmed: 17881003
Sanchez, E. J., Lewis, K. M., Danna, B. R. & Kang, C. High-capacity Ca
pubmed: 22337878 pmcid: 3322862
Lewis, K. M. et al. Characterization of post-translational modifications to calsequestrins of cardiac and skeletal muscle. Int. J. Mol. Sci. 17, 1539 (2016).
Krause, K. H., Milos, M., Luan-Rilliet, Y., Lew, D. P. & Cox, J. A. Thermodynamics of cation binding to rabbit skeletal muscle calsequestrin. Evidence for distinct Ca
pubmed: 2033046
Sawyer, L. & James, M. N. G. Carboxyl–carboxylate interactions in proteins. Nature 295, 79–80 (1982).
pubmed: 7057876
Frederick, K. K., Marlow, M. S., Valentine, K. G. & Wand, A. J. Conformational entropy in molecular recognition by proteins. Nature 448, 325–329 (2007).
pubmed: 17637663 pmcid: 4156320
Milos, M., Schaer, J. J., Comte, M. & Cox, J. A. Calcium–proton and calcium-magnesium antagonisms in calmodulin: microcalorimetric and potentiometric analyses. Biochemistry 25, 6279–6287 (1986).
pubmed: 3790523
Kamp, F., Donoso, P. & Hidalgo, C. Changes in luminal pH caused by calcium release in sarcoplasmic reticulum vesicles. Biophys. J. 74, 290–296 (1998).
pubmed: 9449329 pmcid: 1299381
Hidalgo, C., Donoso, P. & Rodriguez, P. H. Protons induce calsequestrin conformational changes. Biophys. J. 71, 2130–2137 (1996).
pubmed: 8889188 pmcid: 1233680
Winter, G. et al. DIALS: implementation and evaluation of a new integration package. Acta Crystallogr D Struct. Biol. 74, 85–97 (2018).
pubmed: 29533234 pmcid: 5947772
Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190 (2010).
Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).
pubmed: 23793146 pmcid: 3689523
Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).
pubmed: 16369096
Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).
pubmed: 21460441 pmcid: 3069738
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
pubmed: 2483472 pmcid: 2483472
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
pubmed: 20124702 pmcid: 2815670
Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).
pubmed: 3322595 pmcid: 3322595
Terwilliger, T. SOLVE and RESOLVE: automated structure solution, density modification and model building. J. Synchrotron Radiat. 11, 49–52 (2004).
pubmed: 14646132
Terwilliger, T. C. et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D Biol. Crystallogr. 64, 61–69 (2008).
Zwart, P. H., Grosse-Kunstleve, R. W. & Adams, P. D. Xtriage and Fest: automatic assessment of X-ray data and substructure structure factor estimation. CCP4 Newsl. 43, 27–35 (2005).
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
pubmed: 20383002 pmcid: 2852313
Lebedev, A. A. & Isupov, M. N. Space-group and origin ambiguity in macromolecular structures with pseudo-symmetry and its treatment with the program Zanuda. Acta Crystallogr. D Biol. Crystallogr. 70, 2430–2443 (2014).
pubmed: 25195756
Dolinsky, T. J., Nielsen, J. E., McCammon, J. A. & Baker, N. A. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 32, W665–W667 (2004).
pubmed: 15215472 pmcid: 441519
Cornell, W. D. et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995).
Jurrus, E. et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27, 112–128 (2018).
pubmed: 28836357
Schrödinger, LLC. The PyMOL Molecular Graphics System, Version 2.2.3 (2019).
Ho, B. K. & Gruswitz, F. HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct. Biol. 8, 49 (2008).
pubmed: 19014592 pmcid: 2603037
Beitz, E. TeXshade: shading and labeling of multiple sequence alignments using LaTeX2e. Bioinformatics 16, 135–139 (2000).
pubmed: 10842735
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

Auteurs

Erron W Titus (EW)

Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA. erron.titus@ucsf.edu.

Frederick H Deiter (FH)

Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.

Chenxu Shi (C)

Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.

Julianne Wojciak (J)

Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
Cardiovascular Genetics Program, University of California, San Francisco, San Francisco, CA, USA.

Melvin Scheinman (M)

Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
Cardiovascular Genetics Program, University of California, San Francisco, San Francisco, CA, USA.

Natalia Jura (N)

Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.

Rahul C Deo (RC)

Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA. rdeo@bwh.harvard.edu.
Department of Medicine, University of California, San Francisco, San Francisco, CA, USA. rdeo@bwh.harvard.edu.
Cardiovascular Genetics Program, University of California, San Francisco, San Francisco, CA, USA. rdeo@bwh.harvard.edu.
Harvard Medical School, Harvard University, Boston, MA, USA. rdeo@bwh.harvard.edu.
Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA. rdeo@bwh.harvard.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH