[Anti-TNF-α in the treatment of non-infectious uveitis].
Les anti-TNF-α pour le traitement des uvéites non infectieuses.
Journal
Medecine sciences : M/S
ISSN: 1958-5381
Titre abrégé: Med Sci (Paris)
Pays: France
ID NLM: 8710980
Informations de publication
Date de publication:
Oct 2020
Oct 2020
Historique:
entrez:
7
10
2020
pubmed:
8
10
2020
medline:
13
11
2020
Statut:
ppublish
Résumé
Non-infectious uveitis is a heterogenous group of potentially blinding ocular autoimmune diseases that may represent a manifestation of a systemic condition or may affect the eyes only. A systemically administered anti-TNF has recently been approved for the treatment of non-infectious uveitis, broadening the therapeutic arsenal available to control intraocular inflammation and reduce uveitis complications that can lead to vision loss. When uveitis affects only the eyes, a local anti-TNF-α administration strategy could optimize the ocular therapeutic effect and reduce undesirable systemic side-effects. A new ocular method of non-viral gene therapy, currently in development, may broaden the indications for ocular anti-TNF-α agents, not only for uveitis but also for other diseases in which TNF-α-mediated neuro-inflammation has been demonstrated. Les anti-TNF-α pour le traitement des uvéites non infectieuses. Les molécules anti-TNF-α administrés par voie générale ont été approuvés récemment pour le traitement des uvéites non inflammatoires, élargissant l’arsenal thérapeutique dans le traitement de ces pathologies responsables de cécité évitable si l’inflammation est contrôlée. Quand seul l’œil est atteint, des stratégies d’administration locale permettraient d’optimiser les effets intraoculaires des molécules anti-TNF-α et d’en réduire les effets indésirables. Une nouvelle méthode de thérapie génique non virale, actuellement en développement, pourrait élargir les indications des molécules anti-TNF-α oculaires, non seulement pour les uvéites, mais également pour d’autres maladies dans lesquelles une neuro-inflammation impliquant le TNF-α a été démontrée.
Autres résumés
Type: Publisher
(fre)
Les anti-TNF-α pour le traitement des uvéites non infectieuses.
Identifiants
pubmed: 33026332
doi: 10.1051/medsci/2020160
pii: msc200148
doi:
Substances chimiques
Antibodies, Neutralizing
0
Tumor Necrosis Factor-alpha
0
Types de publication
Journal Article
Review
Langues
fre
Sous-ensembles de citation
IM
Pagination
893-899Informations de copyright
© 2020 médecine/sciences – Inserm.
Références
Thorne JE, Suhler E, Skup M, et al. Prevalence of noninfectious uveitis in the United States: a claims-based analysis. JAMA Ophthalmol 2016 ; 134 : 1237–1245.
Daudin JB Épidémiologie. Uvéites. Paris : Masson 2010 : 111.
Brézin AP. Sémiologie et classification des uvéites. Uvéites. Paris: Masson, 2010.
Massa H, Georgoudis P, Panos GD. Dexamethasone intravitreal implant (Ozurdex
Dick AD, Forrester JV, Liversidge J, Cope AP. The role of tumour necrosis factor (TNF-αlpha) in experimental autoimmune uveoretinitis (EAU). Prog Retin Eye Res 2004 ; 23 : 617–637.
Smith RA, Baglioni C. The active form of tumor necrosis factor is a trimer. J Biol Chem 1987 ; 262 : 6951–6954.
van Schie KA, Ooijevaar-de Heer P, Dijk L, et al. Therapeutic TNF inhibitors can differentially stabilize trimeric TNF by inhibiting monomer exchange. Sci Rep 2016 ; 6 : 32747.
Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 1994 ; 76 : 959–962.
Grell M, Douni E, Wajant H, et al. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 1995 ; 83 : 793–802.
Yang S, Wang J, Brand DD, Zheng SG. Role of TNF-TNF receptor 2 signal in regulatory T cells and its therapeutic implications. Front Immunol 2018 ; 9 : 784.
Kowalczuk L, Touchard E, Camelo S, et al. Local ocular immunomodulation resulting from electrotransfer of plasmid encoding soluble TNF receptors in the ciliary muscle. Invest Ophthalmol Vis Sci 2009 ; 50 : 1761–1768.
Horai R, Caspi RR. Cytokines in autoimmune uveitis. J Interferon Cytokine Res 2011 ; 31 : 733–744.
Bauer D, Kasper M, Walscheid K, et al. Multiplex cytokine analysis of aqueous humor in juvenile idiopathic arthritis-associated anterior uveitis with or without secondary glaucoma. Front Immunol 2018 ; 9 : 708.
Bonacini M, Soriano A, Cimino L, et al. Cytokine profiling in aqueous humor samples from patients with non-infectious uveitis associated with systemic inflammatory diseases. Front Immunol 2020; 11 : 358.
Lim H, Lee SH, Lee HT, et al. Structural biology of the TNFα antagonists used in the treatment of rheumatoid arthritis. Int J Mol Sci 2018 ; 19 :
Scallon B, Cai A, Solowski N, et al. Binding and functional comparisons of two types of tumor necrosis factor antagonists. J Pharmacol Exp Ther 2002 ; 301 : 418–426.
Tracey D, Klareskog L, Sasso EH, et al. Tumor necrosis factor antagonist mechanisms of action : a comprehensive review. Pharmacol Ther 2008 ; 117 : 244–279.
Billmeier U, Dieterich W, Neurath MF, Atreya R. Molecular mechanism of action of anti-tumor necrosis factor antibodies in inflammatory bowel diseases. World J Gastroenterol 2016 ; 22 : 9300–9313.
Kaymakcalan Z, Sakorafas P, Bose S, et al. Comparisons of affinities, avidities, and complement activation of adalimumab, infliximab, and etanercept in binding to soluble and membrane tumor necrosis factor. Clin Immunol 2009 ; 131 : 308–316.
Calmon-Hamaty F, Combe B, Hahne M, Morel J. Lymphotoxin α stimulates proliferation and pro-inflammatory cytokine secretion of rheumatoid arthritis synovial fibroblasts. Cytokine 2011 ; 53 : 207–214.
Adler BL, Wang CJ, Bui T-L, et al. Anti-tumor necrosis factor agents in sarcoidosis: a systematic review of efficacy and safety. Semin Arthritis Rheum 2019 ; 48 : 1093–1104.
Ramos-Casals M, Brito-Zerón P, Muñoz S, Soto MJ. Biogeas study group. A systematic review of the off-label use of biological therapies in systemic autoimmune diseases. Medicine (Baltimore) 2008 ; 87 : 345–364.
Jaffe GJ, Dick AD, Brézin AP, et al. Adalimumab in patients with active noninfectious uveitis. N Engl J Med 2016 ; 375 : 932–943.
Nguyen QD, Merrill PT, Jaffe GJ, et al. Adalimumab for prevention of uveitic flare in patients with inactive non-infectious uveitis controlled by corticosteroids (Visual II): a multicentre, double-masked, randomised, placebo-controlled phase 3 trial. Lancet 2016 ; 388 : 1183–1192.
Celiker H, Kazokoglu H, Direskeneli H. Conventional immunosuppressive therapy in severe Behcet’s Uveitis: the switch rate to the biological agents. BMC Ophthalmol 2018 ; 18 : 261.
Dick AD, Rosenbaum JT, Al-Dhibi HA, et al. Guidance on noncorticosteroid systemic immunomodulatory therapy in noninfectious uveitis: fundamentals of care for uveitis (Focus) initiative. Ophthalmology 2018 ; 125 : 757–773.
Kahn P, Weiss M, Imundo LF, Levy DM. Favorable response to high-dose infliximab for refractory childhood uveitis. Ophthalmology 2006 ; 113 : 860–864.e2.
Riancho-Zarrabeitia L, Calvo-Río V, Blanco R, et al. Anti-TNF-α therapy in refractory uveitis associated with sarcoidosis: multicenter study of 17 patients. Semin Arthritis Rheum 2015 ; 45 : 361–368.
Takeuchi M, Kezuka T, Sugita S, et al. Evaluation of the long-term efficacy and safety of infliximab treatment for uveitis in Behçet’s disease: a multicenter study. Ophthalmology 2014 ; 121 : 1877–1884.
Ramanan AV, Dick AD, Jones AP, et al. Adalimumab plus methotrexate for uveitis in juvenile idiopathic arthritis. N Engl J Med 2017 ; 376 : 1637–1646.
Frantz C, Portier A, Etcheto A, et al. Acute anterior uveitis in spondyloarthritis: a monocentric study of 301 patients. Clin Exp Rheumatol 2019 ; 37 : 26–31.
Guignard S, Gossec L, Salliot C, et al. Efficacy of tumour necrosis factor blockers in reducing uveitis flares in patients with spondylarthropathy: a retrospective study. Ann Rheum Dis 2006 ; 65 : 1631–1634.
Rudwaleit M, Rødevand E, Holck P, et al. Adalimumab effectively reduces the rate of anterior uveitis flares in patients with active ankylosing spondylitis: results of a prospective open-label study. Ann Rheum Dis 2009 ; 68 : 696–701.
Lie E, Lindström U, Zverkova-Sandström T, et al. Tumour necrosis factor inhibitor treatment and occurrence of anterior uveitis in ankylosing spondylitis: results from the Swedish biologics register. Ann Rheum Dis 2017 ; 76 : 1515–1521.
Braun J, Baraliakos X, Listing J, Sieper J. Decreased incidence of anterior uveitis in patients with ankylosing spondylitis treated with the anti-tumor necrosis factor agents infliximab and etanercept. Arthritis Rheum 2005 ; 52 : 2447–2451.
Lim LL, Fraunfelder FW, Rosenbaum JT. Do tumor necrosis factor inhibitors cause uveitis?. A registry-based study. Arthritis Rheum 2007 ; 56 : 3248–3252.
El Sanharawi M, Kowalczuk L, Touchard E, et al. Protein delivery for retinal diseases: from basic considerations to clinical applications. Prog Retin Eye Res 2010 ; 29 : 443–465.
Bouquet C, Vignal Clermont C, Galy A, et al. Immune response and intraocular inflammation in patients with leber hereditary optic neuropathy treated with intravitreal injection of recombinant adeno-associated virus 2 Carrying the ND4 gene: a secondary analysis of a phase 1/2 clinical trial. JAMA Ophthalmol 2019 ; 137 : 399–406.
Davis JL. The blunt end: surgical challenges of gene therapy for inherited retinal diseases. Am J Ophthalmol 2018; 196 : xxv–xxix.
André F, Mir LM. DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene Ther 2004 ; 11(suppl 1): S33–S42.
Garcia-Frigola C, Carreres MI, Vegar C, Herrera E. Gene delivery into mouse retinal ganglion cells by in utero electroporation. BMC Dev Biol 2007 ; 7 : 103.
De Melo J, Blackshaw S. In vivo electroporation of developing mouse retina. Methods Mol Biol Clifton NJ 2018 ; 1715 : 101–111.
Latella MC, Di Salvo MT, Cocchiarella F, et al. In vivo editing of the human mutant rhodopsin gene by electroporation of plasmid-based CRISPR/Cas9 in the mouse retina. Mol Ther Nucleic Acids 2016 ; 5 : e389.
Touchard E, Berdugo M, Bigey P, et al. Suprachoroidal electrotransfer: a nonviral gene delivery method to transfect the choroid and the retina without detaching the retina. Mol Ther J Am Soc Gene Ther 2012 ; 20 : 1559–1570.
El Sanharawi M, Touchard E, Benard R, et al. Long-term efficacy of ciliary muscle gene transfer of three sFlt-1 variants in a rat model of laser-induced choroidal neovascularization. Gene Ther 2013 ; 20 : 1093–1103.
Bloquel C, Bourges JL, Touchard E, et al. Non-viral ocular gene therapy: potential ocular therapeutic avenues. Adv Drug Deliv Rev 2006 ; 58 : 1224–1242.
Touchard E, Kowalczuk L, Bloquel C, et al. The ciliary smooth muscle electrotransfer : basic principles and potential for sustained intraocular production of therapeutic proteins. J Gene Med 2010 ; 12 : 904–919.
Touchard E, Benard R, Bigot K, et al. Non-viral ocular gene therapy, pEYS606, for the treatment of non-infectious uveitis: preclinical evaluation of the medicinal product. J Control Release 2018 ; 285 : 244–251.
Touchard E, Bloquel C, Bigey P, et al. Effects of ciliary muscle plasmid electrotransfer of TNF-αlpha soluble receptor variants in experimental uveitis. Gene Ther 2009 ; 16 : 862–873.
Touchard E, Heiduschka P, Berdugo M, et al. Non-viral gene therapy for GDNF production in RCS rat: the crucial role of the plasmid dose. Gene Ther 2012 ; 19 : 886–898.
Picard E, Le Rouzic Q, Oudar A, et al. Targeting iron-mediated retinal degeneration by local delivery of transferrin. Free Radic Biol Med 2015 ; 89 : 1105–1121.
Flyvbjerg A. Diabetic angiopathy, the complement system and the tumor necrosis factor superfamily. Nat Rev Endocrinol 2010 ; 6 : 94–101.
Tezel G. TNF-αlpha signaling in glaucomatous neurodegeneration. Prog Brain Res 2008 ; 173 : 409–421.
Wei X, Cho K-S, Thee EF, et al. Neuroinflammation and microglia in glaucoma: time for a paradigm shift. J Neurosci Res 2019 ; 97 : 70–76.