Beta-adrenergic receptor antagonism is proinflammatory and exacerbates neuroinflammation in a mouse model of Alzheimer's Disease.


Journal

Neurobiology of disease
ISSN: 1095-953X
Titre abrégé: Neurobiol Dis
Pays: United States
ID NLM: 9500169

Informations de publication

Date de publication:
12 2020
Historique:
received: 15 04 2020
revised: 14 09 2020
accepted: 18 09 2020
pubmed: 25 9 2020
medline: 26 10 2021
entrez: 24 9 2020
Statut: ppublish

Résumé

Adrenergic systems regulate both cognitive function and immune function. The primary source of adrenergic signaling in the brain is norepinephrine (NE) neurons of the locus coeruleus (LC), which are vulnerable to age-related degeneration and are one of the earliest sites of pathology and degeneration in neurodegenerative disorders such as Alzheimer's Disease (AD). Loss of adrenergic tone may potentiate neuroinflammation both in aging and neurodegenerative conditions. Importantly, beta-blockers (beta-adrenergic antagonists) are a common treatment for hypertension, co-morbid with aging, and may further exacerbate neuroinflammation associated with loss of adrenergic tone in the central nervous system (CNS). The present studies were designed to both examine proinflammatory consequences of beta-blocker administration in an acute lipopolysaccharide (LPS) model as well as to examine chronic effects of beta-blocker administration on neuroinflammation and behavior in an amyloid-beta protein precursor (APP) mouse model of AD. We provide evidence for robust potentiation of peripheral inflammation with 4 different beta-blockers in an acute model of LPS. However, beta-blockers did not potentiate CNS inflammation in this model. Notably, in this same model, the genetic knockdown of either beta1- or beta2-adrenergic receptors in microglia did potentiate CNS inflammation. Furthermore, in an APP mouse model of amyloid pathology, chronic beta-blocker administration did potentiate CNS inflammation. The beta-blocker, metoprolol, also induced markers of phagocytosis and impaired cognitive behavior in both wild-type and APP mice. Given the induction of markers of phagocytosis in vivo, we examined phagocytosis of synaptosomes in an in vitro primary microglia culture and showed that beta-blockers enhanced whereas beta-adrenergic agonists inhibited phagocytosis of synaptosomes. In conclusion, beta-blockers potentiated inflammation peripherally in a systemic model of inflammation and centrally in an amyloidosis model of neuroinflammation. Additionally, beta-blockers impaired learning and memory and modulated synaptic phagocytosis with implications for synaptic degeneration. These findings warrant further consideration of the proinflammatory consequences of chronic beta-blocker administration, which are not restricted to the periphery in patients with neurodegenerative disorders.

Identifiants

pubmed: 32971233
pii: S0969-9961(20)30364-8
doi: 10.1016/j.nbd.2020.105089
pmc: PMC7686098
mid: NIHMS1635305
pii:
doi:

Substances chimiques

Adrenergic beta-Antagonists 0
Receptors, Adrenergic, beta 0
Norepinephrine X4W3ENH1CV

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

105089

Subventions

Organisme : NINDS NIH HHS
ID : P30 NS069375
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG054533
Pays : United States
Organisme : NINDS NIH HHS
ID : R21 NS097945
Pays : United States

Informations de copyright

Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.

Références

Nature. 2019 Mar;567(7748):305-307
pubmed: 30894741
Inflammation. 2016 Jun;39(3):1069-75
pubmed: 27037808
Neurochem Int. 2002 Nov;41(5):357-65
pubmed: 12176079
Psychoneuroendocrinology. 2012 Sep;37(9):1491-505
pubmed: 22386198
Science. 2017 Sep 1;357(6354):891-898
pubmed: 28860381
Br J Pharmacol. 2005 Feb;144(3):317-22
pubmed: 15655528
Ann Clin Transl Neurol. 2014 May 1;1(5):348-360
pubmed: 24883337
Brain Behav Immun. 2002 Aug;16(4):461-76
pubmed: 12096891
Neurobiol Aging. 2014 Dec;35(12):2726-2735
pubmed: 25034342
Psychol Med. 1999 Sep;29(5):1083-8
pubmed: 10576300
Neurobiol Aging. 2011 Dec;32(12):2321.e1-12
pubmed: 20579773
Br J Pharmacol. 2010 Jul;160(5):1048-61
pubmed: 20590599
Clin Drug Investig. 2019 Nov;39(11):1067-1075
pubmed: 31327127
Nat Commun. 2017 Nov 22;8(1):1706
pubmed: 29167435
Am J Ther. 2010 Jul-Aug;17(4):358-64
pubmed: 20019592
J Neurosci. 2014 Sep 3;34(36):11929-47
pubmed: 25186741
Nat Rev Neurosci. 2009 Mar;10(3):211-23
pubmed: 19190638
Neurobiol Aging. 2007 Aug;28(8):1206-14
pubmed: 16837104
Brain Behav Immun. 2010 May;24(4):660-71
pubmed: 20193756
Curr Alzheimer Res. 2008 Jun;5(3):342-5
pubmed: 18537547
Neuropharmacology. 2017 Apr;116:371-386
pubmed: 28089846
Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):6058-63
pubmed: 20231476
Infect Immun. 1994 May;62(5):2046-50
pubmed: 8168970
Am J Alzheimers Dis Other Demen. 2007 Feb-Mar;22(1):57-61
pubmed: 17534003
J Alzheimers Dis. 2010;20(3):903-14
pubmed: 20182022
J Neurosci. 2006 Feb 1;26(5):1343-54
pubmed: 16452658
Neurobiol Dis. 2011 Aug;43(2):397-413
pubmed: 21527343
Pharmacol Rev. 2000 Dec;52(4):595-638
pubmed: 11121511
Nat Protoc. 2008;3(6):1101-8
pubmed: 18546601
J Neuroimmunol. 1995 Sep;61(2):123-31
pubmed: 7593548
Science. 2017 Sep 15;357(6356):1149-1155
pubmed: 28912243
Trends Cogn Sci. 2016 Mar;20(3):214-226
pubmed: 26895736
Nat Rev Neurosci. 2008 Jan;9(1):46-56
pubmed: 18073775
Exp Neurol. 2012 Aug;236(2):199-206
pubmed: 22609331
Brain Res Mol Brain Res. 1996 Feb;36(1):53-62
pubmed: 9011765
J Alzheimers Dis. 2014;42(2):459-83
pubmed: 24898660
J Gerontol A Biol Sci Med Sci. 2005 Jan;60(1):67-73
pubmed: 15741285
J Neurosci. 2018 Jan 3;38(1):74-92
pubmed: 29133432
J Neuroimmunol. 2011 Mar;232(1-2):209-16
pubmed: 21035874
Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17501-6
pubmed: 17088541
Brain Behav. 2012 Mar;2(2):142-54
pubmed: 22574282
Brain Behav Immun. 2008 Oct;22(7):1078-1086
pubmed: 18468841
Immunology. 2008 Jul;124(3):348-56
pubmed: 18194271
Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16657-62
pubmed: 17925438
J Neurochem. 2016 Oct;139 Suppl 2:154-178
pubmed: 26968403
PLoS One. 2017 Jul 26;12(7):e0180319
pubmed: 28746336
Brain Behav Immun. 2016 Aug;56:114-29
pubmed: 26928198

Auteurs

Andrew K Evans (AK)

Department of Neurosurgery, Stanford University School of Medicine, 1050 Arastradero Road, Building A, Palo Alto, CA 94304, United States of America.

Pooneh M Ardestani (PM)

Department of Neurosurgery, Stanford University School of Medicine, 1050 Arastradero Road, Building A, Palo Alto, CA 94304, United States of America.

Bitna Yi (B)

Department of Neurosurgery, Stanford University School of Medicine, 1050 Arastradero Road, Building A, Palo Alto, CA 94304, United States of America.

Heui Hye Park (HH)

Department of Neurosurgery, Stanford University School of Medicine, 1050 Arastradero Road, Building A, Palo Alto, CA 94304, United States of America.

Rachel K Lam (RK)

Department of Neurosurgery, Stanford University School of Medicine, 1050 Arastradero Road, Building A, Palo Alto, CA 94304, United States of America.

Mehrdad Shamloo (M)

Department of Neurosurgery, Stanford University School of Medicine, 1050 Arastradero Road, Building A, Palo Alto, CA 94304, United States of America. Electronic address: mshamloo@stanford.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
C-Reactive Protein Humans Biomarkers Inflammation
Humans Immune Checkpoint Inhibitors Lung Neoplasms Prognosis Inflammation

Classifications MeSH