Transcriptome analysis of primary podocytes reveals novel calcium regulated regulatory networks.
Actin Cytoskeleton
/ metabolism
Animals
Becaplermin
/ genetics
Bridged Bicyclo Compounds, Heterocyclic
/ pharmacology
Calcium Ionophores
/ pharmacology
Calcium Signaling
Cells, Cultured
Gene Regulatory Networks
Mice
Mice, Inbred C57BL
MicroRNAs
/ genetics
Podocytes
/ drug effects
Rapamycin-Insensitive Companion of mTOR Protein
/ genetics
Thiazolidines
/ pharmacology
Transcriptome
CaAR
Nephroseq
RNA-sequencing
mTOR
pathway analysis
Journal
FASEB journal : official publication of the Federation of American Societies for Experimental Biology
ISSN: 1530-6860
Titre abrégé: FASEB J
Pays: United States
ID NLM: 8804484
Informations de publication
Date de publication:
11 2020
11 2020
Historique:
received:
05
10
2019
revised:
11
08
2020
accepted:
14
08
2020
pubmed:
16
9
2020
medline:
1
5
2021
entrez:
15
9
2020
Statut:
ppublish
Résumé
Podocytes are pivotal in establishing the selective permeability of the glomerular filtration barrier. Recently, we showed that an increase of the intracellular calcium ion concentration [Ca
Identifiants
pubmed: 32931033
doi: 10.1096/fj.201902493RR
doi:
Substances chimiques
Bridged Bicyclo Compounds, Heterocyclic
0
Calcium Ionophores
0
MIRN17-92 microRNA, mouse
0
MicroRNAs
0
Rapamycin-Insensitive Companion of mTOR Protein
0
Thiazolidines
0
rictor protein, mouse
0
Becaplermin
1B56C968OA
latrunculin A
SRQ9WWM084
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
14490-14506Subventions
Organisme : NIH/NIDDK
ID : 2P30-DK-081943
Informations de copyright
© 2020 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.
Références
Henger A, Huber T, Fischer K-G, et al. Angiotensin II increases the cytosolic calcium activity in rat podocytes in culture. Kidney Int. 1997;52:687-693.
Choi SY, Suh KS, Choi DE, Lim BJ. Morphometric analysis of podocyte foot process effacement in IgA nephropathy and its association with proteinuria. Ultrastruct Pathol. 2010;34:195-198.
Kohn S, Fradis M, Ben-David J, Zidan J, Robinson E. Nephrotoxicity of combined treatment with cisplatin and gentamicin in the guinea pig: glomerular injury findings. Ultrastruct Pathol. 2002;26:371-382.
Granado D, Müller D, Krausel V, et al. Intracellular APOL1 risk variants cause cytotoxicity accompanied by energy depletion. J Am Soc Nephrol. 2017;28:3227-3238.
Han TS, Schwartz MM, Lewis EJ. Association of glomerular podocytopathy and nephrotic proteinuria in mesangial lupus nephritis. Lupus. 2006;15:71-75.
Boehlke C, Hartleben B, Huber TB, Hopfer H, Walz G, Neumann-Haefelin E. Hantavirus infection with severe proteinuria and podocyte foot-process effacement. Am J Kidney Dis. 2014;64:452-456.
Perez-Hernandez J, Olivares MD, Solaz E, et al. Urinary podocyte-associated molecules and albuminuria in hypertension. J Hypertens. 2018;36(8), 1712-1718. http://dx.doi.org/10.1097/hjh.0000000000001747
Vassiliadis J, Bracken C, Matthews D, O’Brien S, Schiavi S, Wawersik S. Calcium mediates glomerular filtration through calcineurin and mTORC2/Akt signaling. J Am Soc Nephrol. 2011;22:1453-1461.
Luo W, Olaru F, Miner JH, et al. Alternative pathway is essential for glomerular complement activation and proteinuria in a mouse model of membranous nephropathy. Front Immunol. 2018;9:1433.
Ilatovskaya DV, Blass G, Palygin O, et al. A NOX4/TRPC6 pathway in podocyte calcium regulation and renal damage in diabetic kidney disease. J Am Soc Nephrol. 2018;29:1917-1927.
Riedl J, Crevenna AH, Kessenbrock K, et al. Lifeact: a versatile marker to visualize F-actin. Nat Methods. 2008;5:605-607.
Burford JL, Villanueva K, Lam L, et al. Intravital imaging of podocyte calcium in glomerular injury and disease. J Clin Invest. 2014:2050-2058. http://dx.doi.org/10.1172/jci71702
Garg P. A review of podocyte biology. Am J Nephrol. 2018;47(Suppl 1):3-13.
Wales P, Schuberth CE, Aufschnaiter R, et al. Calcium-mediated actin reset (CaAR) mediates acute cell adaptations. Elife. 2016;5:1-31. http://dx.doi.org/10.7554/elife.19850
Greka A, Mundel P. Calcium regulates podocyte actin dynamics. Semin Nephrol. 2012;32:319-326.
Boerries M, Grahammer F, Eiselein S, et al. Molecular fingerprinting of the podocyte reveals novel gene and protein regulatory networks. Kidney Int. 2013;83:1052-1064.
Karaiskos N, Rahmatollahi M, Boltengagen A, et al. A Single-Cell Transcriptome Atlas of the Mouse Glomerulus. J. Am. Soc. Nephrol. 2018;29:2060-2068.
Harder JL, Menon R, Otto EA, et al. Organoid single cell profiling identifies a transcriptional signature of glomerular disease. JCI Insight. 2019;4:1-21. http://dx.doi.org/10.1172/jci.insight.122697
Rinschen MM, Gödel M, Grahammer F, et al. A multi-layered quantitative in vivo expression atlas of the podocyte unravels kidney disease candidate genes. Cell Rep. 2018;23:2495-2508.
Reed PW, Lardy HA. A23187: a divalent cation ionophore. J Biol Chem. 1972;247:6970-6977.
Fujiwara I, Zweifel ME, Courtemanche N, Pollard TD. Latrunculin A accelerates actin filament depolymerization in addition to sequestering actin monomers. Curr Biol. 2018;28:3183-3192.e2.
Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L. A global double-fluorescent Cre reporter mouse. Genesis. 2007;45:593-605.
Takemoto M, Asker N, Gerhardt H, et al. A new method for large scale isolation of kidney glomeruli from mice. Am J Pathol. 2002;161:799-805.
Basu S, Campbell HM, Dittel BN, Ray A. Purification of specific cell population by fluorescence activated cell sorting (FACS). J Vis Exp. 2010:1-4. http://dx.doi.org/10.3791/1546
Wingett SW, Andrews S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research. 2018;7:1338.
Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15-21.
Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11:1650-1667.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Krämer A, Green J, Pollard J, Tugendreich S, Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30:523-530.
Reimand J, Arak T, Adler P, et al. g:Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 2016;44:W83-W89.
Vollenbröker B, George B, Wolfgart M, Saleem MA, Pavenstädt H, Weide T. mTOR regulates expression of slit diaphragm proteins and cytoskeleton structure in podocytes. Am J Physiol. 2009;296:F418-F426.
Grahammer F, Wanner N, Huber TB. mTOR controls kidney epithelia in health and disease. Nephrol Dial Transplant. 2014;29:i9-i18.
Ron D. Translational control in the endoplasmic reticulum stress response. J Clin Invest. 2002;110:1383-1388.
Concepcion CP, Bonetti C, Ventura A. The microRNA-17-92 family of microRNA clusters in development and disease. Cancer J. 2012;18:262-267.
Jiang C, Bi C, Jiang X, et al. The miR-17~92 cluster activates mTORC1 in mantle cell lymphoma by targeting multiple regulators in the STK11/AMPK/TSC/mTOR pathway. Br J Haematol. 185 2019. http://dx.doi.org/10.1111/bjh.15591
Gödel M, Hartleben B, Herbach N, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest. 2011;121:2197-2209.
Ju W, Eichinger F, Bitzer M, et al. Renal gene and protein expression signatures for prediction of kidney disease progression. Am J Pathol. 2009;174:2073-2085.
Ju W, Smith S, Kretzler M. Genomic biomarkers for chronic kidney disease. Transl Res. 2012;159:290-302.
Smeets B, Kabgani N, Moeller MJ. Isolation and Primary Culture of Murine Podocytes with Proven Origin. New York, NY: Humana Press; 2016:3-10.
Karaiskos N, Rahmatollahi M, Boltengagen A, et al. A single-cell transcriptome atlas of the mouse glomerulus. J Am Soc Nephrol. 2018;29:2060-2068.
Mundel P, Reiser J, Borja AZM, et al. Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines. Exp Cell Res. 1997;236:248-258.
Keir LS, Firth R, May C, Ni L, Welsh GI, Saleem MA. Generating conditionally immortalised podocyte cell lines from wild-type mice. Nephron. 2015;129:128-136.
Neild GH. Life expectancy with chronic kidney disease: an educational review. Pediatr Nephrol. 2017;32:243-248.
Schlöndorff J, Del Camino D, Carrasquillo R, Lacey V, Pollak MR. TRPC6 mutations associated with focal segmental glomerulosclerosis cause constitutive activation of NFAT-dependent transcription. Am J Physiol Cell Physiol. 2009;296:C558-C569.
Zhang H-T, Wang W-W, Ren L-H, et al. The mTORC2/Akt/NFκB pathway-mediated activation of TRPC6 participates in adriamycin-induced podocyte apoptosis. Cell Physiol Biochem. 2016;40:1079-1093.
Beer HD, Longaker MT, Werner S. Reduced expression of PDGF and PDGF receptors during impaired wound healing. J Invest Dermatol. 1997;109:132-138.
Schiessl IM, Grill A, Fremter K, Steppan D, Hellmuth M-K, Castrop H. Renal interstitial platelet-derived growth factor receptor- β cells support proximal tubular regeneration. J Am Soc Nephrol. 2018;29:1383-1396.
Bergsten E, Uutela M, Li X, et al. PDGF-D is a specific, protease-activated ligand for the PDGF β-receptor. Nat Cell Biol. 2001;3:512-516.
LaRochelle WJ, Jeffers M, McDonald WF, et al. PDGF-D, a new protease-activated growth factor. Nat Cell Biol. 2001;3:517-521.
van Roeyen CRC, Eitner F, Boor P, et al. Induction of progressive glomerulonephritis by podocyte-specific overexpression of platelet-derived growth factor-D. Kidney Int. 2011;80:1292-1305.
Bollée G, Flamant M, Schordan S, et al. Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis. Nat Med. 2011;17:1242-1250.
Nozaki Y, Kinoshita K, Yano T, et al. Signaling through the interleukin-18 receptor α attenuates inflammation in cisplatin-induced acute kidney injury. Kidney Int. 2012;82:892-902.
Takemura T, Okada M, Akano N, et al. Proto-oncogene expression in human glomerular diseases. J Pathol. 1996;178:343-351.
Eid S, Boutary S, Braych K, et al. mTORC2 signaling regulates Nox4-induced podocyte depletion in diabetes. Antioxid Redox Signal. 2016;25:703-719.
Inoki K, Mori H, Wang J, et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest. 2011;121:2181-2196.
Jacinto E, Loewith R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6:1122-1128.
Marrone AK, Stolz DB, Bastacky SI, Kostka D, Bodnar AJ, Ho J. MicroRNA-17~92 is required for nephrogenesis and renal function. J Am Soc Nephrol. 2014;25:1440-1452.
Henique C, Bollée G, Loyer X, et al. Genetic and pharmacological inhibition of microRNA-92a maintains podocyte cell cycle quiescence and limits crescentic glomerulonephritis. Nat Commun. 2017;8:1829.