Introducing a delivery system for melanogenesis inhibition in melanoma B16F10 cells mediated by the conjugation of tyrosine ammonia-lyase and a TAT-penetrating peptide.
Ammonia-Lyases
/ metabolism
Animals
Cell Survival
/ drug effects
Cell-Penetrating Peptides
/ chemistry
Drug Delivery Systems
Gene Products, tat
/ chemistry
Melanins
/ metabolism
Melanocytes
/ drug effects
Melanoma, Experimental
/ drug therapy
Mice
Rhodobacter sphaeroides
/ enzymology
Tyrosine
/ metabolism
cell-penetrating peptide
melanin
metabolic engineering
protein delivery
tyrosine ammonia-lyase
Journal
Biotechnology progress
ISSN: 1520-6033
Titre abrégé: Biotechnol Prog
Pays: United States
ID NLM: 8506292
Informations de publication
Date de publication:
01 2021
01 2021
Historique:
received:
29
06
2020
revised:
12
08
2020
accepted:
21
08
2020
pubmed:
26
8
2020
medline:
29
1
2022
entrez:
26
8
2020
Statut:
ppublish
Résumé
Hyperpigmentation disorders negatively influence an individual's quality of life and may cause emotional distress. Over the years, various melanogenesis inhibitors (mainly tyrosinase inhibitors) have been developed, most of which with low efficacy or high toxicity. Although metabolic engineering by deviation in the flux of substrate is of considerable interest, trials to develop a melanogenesis inhibitor based on L-tyrosine (L-Tyr) restriction are missing. We propose a novel proteinaceous melanogenesis inhibitor called tyrosine ammonia-lyase (TAL), an enzyme that catalyzes the conversion of L-Tyr to p-coumaric acid and ammonia. Since the cell membrane can act as a barrier for intracellular protein delivery, we have covalently conjugated a recombinant TAL enzyme from Rhodobacter sphaeroides (RsTAL) to a trans-activator of transcription (TAT) cell-penetrating peptide (CPP) to afford the intracellular delivery. The heterologously expressed TAT-RsTAL fusion protein was delivered successfully into B16F10 melanocytes as confirmed by the direct fluorescence microscopy with increased intensity from 30 to 180 min. TAT-RsTAL showed sufficient intracellular activity of about 0.83 ± 0.04 and 0.34 ± 0.03 nmol•mg
Substances chimiques
Cell-Penetrating Peptides
0
Gene Products, tat
0
Melanins
0
Tyrosine
42HK56048U
Ammonia-Lyases
EC 4.3.1.-
L-tyrosine ammonia-lyase
EC 4.3.1.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e3071Subventions
Organisme : Shiraz University of Medical Sciences
ID : 1396-01-05-14158
Informations de copyright
© 2020 American Institute of Chemical Engineers.
Références
Feng L, Shi N, Cai S, et al. De novo molecular design of a novel octapeptide that inhibits in vivo melanogenesis and has great transdermal ability. J Med Chem. 2018;61(15):6846-6857. https://doi.org/10.1021/acs.jmedchem.8b00737.
Ashooriha M, Khoshneviszadeh M, Khoshneviszadeh M, et al. 1, 2, 3-Triazole-based kojic acid analogs as potent tyrosinase inhibitors: design, synthesis and biological evaluation. Bioorg Chem. 2019;82:414-422. https://doi.org/10.1016/j.bioorg.2018.10.069.
Grimes PE. Management of hyperpigmentation in darker racial ethnic groups. Semin Cutan Med Surg. 2009;28(2):77-85. https://doi.org/10.1016/j.sder.2009.04.001.
Pillaiyar T, Manickam M, Namasivayam V. Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem. 2017;32(1):403-425. https://doi.org/10.1080/14756366.2016.1256882.
Kumari S, Thng STG, Verma NK, Gautam HK. Melanogenesis inhibitors. Acta Derm Venereol. 2018;98(9-10):924-931. https://doi.org/10.2340/00015555-3002.
Pillaiyar T, Namasivayam V, Manickam M, Jung S-H. Inhibitors of melanogenesis: an updated review. J Med Chem. 2018;61(17):7395-7418. https://doi.org/10.1021/acs.jmedchem.7b00967.
Burnett CL, Bergfeld WF, Belsito DV, et al. Final report of the safety assessment of kojic acid as used in cosmetics. Int J Toxicol. 2010;29(suppl 6):244S-273S. https://doi.org/10.1177%2F1091581810385956.
McGregor D. Hydroquinone: an evaluation of the human risks from its carcinogenic and mutagenic properties. Crit Rev Toxicol. 2007;37(10):887-914. https://doi.org/10.1080/10408440701638970.
Arulmozhi V, Pandian K, Mirunalini S. Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids Surf B Biointerfaces. 2013;110:313-320. https://doi.org/10.1016/j.colsurfb.2013.03.039.
Schwahn DJ, Xu W, Herrin AB, Bales ES, Medrano EE. Tyrosine levels regulate the melanogenic response to α-melanocyte-stimulating hormone in human melanocytes: implications for pigmentation and proliferation. Pigment Cell Res. 2001;14(1):32-39. https://doi.org/10.1034/j.1600-0749.2001.140106.x.
Smit NP, Van der Meulen H, Koerten HK, et al. Melanogenesis in cultured melanocytes can be substantially influenced by L-tyrosine and L-cysteine. J Invest Dermatol. 1997;109(6):796-800. https://doi.org/10.1111/1523-1747.ep12340980.
Slominski A, Moellmann G, Kuklinska E, Bomirski A, Pawelek J. Positive regulation of melanin pigmentation by two key substrates of the melanogenic pathway, L-tyrosine and L-dopa. J Cell Sci. 1988;89(3):287.
Shih M-L, Morgan JA. Metabolic flux analysis of secondary metabolism in plants. Metab Eng Commun. 2020;10:e00123. https://doi.org/10.1016/j.mec.2020.e00123.
Kyndt J, Meyer T, Cusanovich M, Van Beeumen J. Characterization of a bacterial tyrosine ammonia lyase, a biosynthetic enzyme for the photoactive yellow protein. FEBS Lett. 2002;512(1-3):240-244. https://doi.org/10.1016/S0014-5793(02)02272-X.
Behzadipour Y, Hemmati S. Considerations on the rational design of covalently conjugated cell-penetrating peptides (CPPs) for intracellular delivery of proteins: a guide to CPP selection using glucarpidase as the model cargo molecule. Molecules. 2019;24(23):4318. https://doi.org/10.3390/molecules24234318.
Guidotti G, Brambilla L, Rossi D. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol Sci. 2017;38(4):406-424. https://doi.org/10.1016/j.tips.2017.01.003.
Hemmati S, Behzadipour Y, Haddad M. Decoding the proteome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for cell-penetrating peptides involved in pathogenesis or applicable as drug delivery vectors. Infect Genet Evol. 2020;85:104474. https://doi.org/10.1016/j.meegid.2020.104474.
Bolhassani A, Jafarzade BS, Mardani G. In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides. Peptides. 2017;87:50-63. https://doi.org/10.1016/j.peptides.2016.11.011.
Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5(4):725-738. https://doi.org/10.1038/nprot.2010.5.
Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JM. PDBsum: structural summaries of PDB entries. Protein Sci. 2018;27(1):129-134. https://doi.org/10.1002/pro.3289.
Ko J, Park H, Heo L, Seok C. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 2012;40(Web Server issue):W294-W297. https://doi.org/10.1093/nar/gks493.
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406-3415. https://doi.org/10.1093/nar/gkg595.
Pucci F, Kwasigroch JM, Rooman M. SCooP: an accurate and fast predictor of protein stability curves as a function of temperature. Bioinformatics. 2017;33(21):3415-3422. https://doi.org/10.1093/bioinformatics/btx417.
Cilia E, Pancsa R, Tompa P, Lenaerts T, Vranken WF. The dynamine webserver: predicting protein dynamics from sequence. Nucleic Acids Res. 2014;42(Web Server issue):W264-W270. https://doi.org/10.1093/nar/gku270.
Dimitrov I, Bangov I, Flower DR, Doytchinova I. AllerTOP v. 2-a server for in silico prediction of allergens. J Mol Model. 2014;20(6):2278. https://doi.org/10.1007/s00894-014-2278-5.
Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinf. 2007;8(1):4. https://doi.org/10.1186/1471-2105-8-4.
Sadeghian I, Khalvati B, Ghasemi Y, Hemmati S. TAT-mediated intracellular delivery of carboxypeptidase G2 protects against methotrexate-induced cell death in HepG2 cells. Toxicol Appl Pharmacol. 2018;346:9-18. https://doi.org/10.1016/j.taap.2018.03.023.
Rahmatabadi SS, Sadeghian I, Ghasemi Y, Sakhteman A, Hemmati S. Identification and characterization of a sterically robust phenylalanine ammonia-lyase among 481 natural isoforms through association of in silico and in vitro studies. Enzyme Microb Technol. 2019;122:36-54. https://doi.org/10.1016/j.enzmictec.2018.12.006.
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-254. https://doi.org/10.1016/0003-2697(76)90527-3.
Hemmati S, Schneider B, Schmidt TJ, Federolf K, Alfermann AW, Fuss E. Justicidin B 7-hydroxylase, a cytochrome P450 monooxygenase from cell cultures of Linum perenne Himmelszelt involved in the biosynthesis of diphyllin. Phytochemistry. 2007;68(22-24):2736-2743. https://doi.org/10.1016/j.phytochem.2007.10.025.
Mahdavi M, Ashtari A, Khoshneviszadeh M, et al. Synthesis of new benzimidazole-1, 2, 3-triazole hybrids as tyrosinase inhibitors. Chem Biodivers. 2018;15(7):e1800120. https://doi.org/10.1002/cbdv.201800120.
Slominski A, Zmijewski MA, Pawelek J. L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res. 2012;25(1):14-27. https://doi.org/10.1111/j.1755-148X.2011.00898.x.
Owji H, Hemmati S. A comprehensive in silico characterization of bacterial signal peptides for the excretory production of Anabaena variabilis phenylalanine ammonia lyase in Escherichia coli. 3 Biotech. 2018;8(12):488. https://doi.org/10.1007/s13205-018-1517-3.
Künnapuu K, Veiman KL, Porosk L, et al. Tumor gene therapy by systemic delivery of plasmid DNA with cell-penetrating peptides. FASEB Bioadv. 2019;1(2):105-114. https://doi.org/10.1096/fba.1026.
Zhu F, Liu F, Wu B, He B. Efficient extracellular expression of metalloprotease for Z-aspartame synthesis. J Agric Food Chem. 2016;64(51):9631-9638. https://doi.org/10.1021/acs.jafc.6b04164.
Karimi Z, Nezafat N, Negahdaripour M, Berenjian A, Hemmati S, Ghasemi Y. The effect of rare codons following the ATG start codon on expression of human granulocyte-colony stimulating factor in Escherichia coli. Protein Expres Purif. 2015;114:108-114. https://doi.org/10.1016/j.pep.2015.05.017.
Clark JJ, Benson ML, Smith RD, Carlson HA. Inherent versus induced protein flexibility: comparisons within and between apo and holo structures. PLoS Comput Biol. 2019;15(1):e1006705. https://doi.org/10.1371/journal.pcbi.1006705.
Markham A. Pegvaliase: first global approval. BioDrugs. 2018;32(4):391-395. https://doi.org/10.1007/s40259-018-0292-3.
Bell S, Wendt D, Zhang Y, et al. Formulation and PEGylation optimization of the therapeutic PEGylated phenylalanine ammonia lyase for the treatment of phenylketonuria. PLoS One. 2017;12:e0173269. https://doi.org/10.1371/journal.pone.0173269.
Patel SG, Sayers EJ, He L, et al. Cell-penetrating peptide sequence and modification dependent uptake and subcellular distribution of green florescent protein in different cell lines. Sci Rep. 2019;9(1):1-9. https://doi.org/10.1038/s41598-019-42456-8.
Boo YC. P-Coumaric acid as an active ingredient in cosmetics: a review focusing on its antimelanogenic effects. Antioxidants. 2019;8(8):275. https://doi.org/10.3390/antiox8080275.
Sitaram A, Marks MS. Mechanisms of protein delivery to melanosomes in pigment cells. Phys Ther. 2012;27(2):85-99. https://doi.org/10.1152/physiol.00043.2011.
Holecek M. Branched-chain amino acids and ammonia metabolism in liver disease: therapeutic implications. Nutrition. 2013;29(10):1186-1191. https://doi.org/10.1016/j.nut.2013.01.022.
Longo N, Harding CO, Burton BK, et al. Single-dose, subcutaneous recombinant phenylalanine ammonia lyase conjugated with polyethylene glycol in adult patients with phenylketonuria: an open-label, multicentre, phase 1 dose-escalation trial. Lancet. 2014;384(9937):37-44. https://doi.org/10.1016/S0140-6736(13)61841-3.
Imbert-Bismut F, Payet P-E, Alfaisal J, et al. Transportation and handling of blood samples prior to ammonia measurement in the real life of a large university hospital. Clin Chim Acta. 2020;510:522-530. https://doi.org/10.1016/j.cca.2020.07.048.
Boz H. P-Coumaric acid in cereals: presence, antioxidant and antimicrobial effects. Int J Food Sci Technol. 2015;50(11):2323-2328. https://doi.org/10.1111/ijfs.12898.
Garrait G, Jarrige J-F, Blanquet S, Beyssac E, Cardot J-M, Alric M. Gastrointestinal absorption and urinary excretion of trans-cinnamic and p-coumaric acids in rats. J Agric Food Chem. 2006;54(8):2944-2950. https://doi.org/10.1021/jf053169a.
Poklar Ulrih N, Prislan I, Cigić B. Coumaric and cinnamic acids in food. In: Xiao J, Sarkar SD, Asakawa Y, eds. Handbook of Dietary Phytochemicals. Singapore: Springer; 2019:1-40.
Pei K, Ou J, Huang J, Ou S. P-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. J Sci Food Agric. 2016;96(9):2952-2962. https://doi.org/10.1002/jsfa.7578.
Chacko SM, Nevin KG, Dhanyakrishnan R, Kumar BP. Protective effect of p-coumaric acid against doxorubicin induced toxicity in H9c2 cardiomyoblast cell lines. Toxicol Rep. 2015;2:1213-1221. https://doi.org/10.1016/j.toxrep.2015.08.002.