Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems.


Journal

Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869

Informations de publication

Date de publication:
12 2020
Historique:
received: 19 03 2020
accepted: 16 07 2020
pubmed: 26 8 2020
medline: 27 2 2021
entrez: 26 8 2020
Statut: ppublish

Résumé

Cyclic-oligonucleotide-based anti-phage signalling systems (CBASS) are a family of defence systems against bacteriophages (hereafter phages) that share ancestry with the cGAS-STING innate immune pathway in animals. CBASS systems are composed of an oligonucleotide cyclase, which generates signalling cyclic oligonucleotides in response to phage infection, and an effector that is activated by the cyclic oligonucleotides and promotes cell death. Cell death occurs before phage replication is completed, therefore preventing the spread of phages to nearby cells. Here, we analysed 38,000 bacterial and archaeal genomes and identified more than 5,000 CBASS systems, which have diverse architectures with multiple signalling molecules, effectors and ancillary genes. We propose a classification system for CBASS that groups systems according to their operon organization, signalling molecules and effector function. Four major CBASS types were identified, sharing at least six effector subtypes that promote cell death by membrane impairment, DNA degradation or other means. We observed evidence of extensive gain and loss of CBASS systems, as well as shuffling of effector genes between systems. We expect that our classification and nomenclature scheme will guide future research in the developing CBASS field.

Identifiants

pubmed: 32839535
doi: 10.1038/s41564-020-0777-y
pii: 10.1038/s41564-020-0777-y
pmc: PMC7610970
mid: EMS126797
doi:

Substances chimiques

Bacterial Proteins 0
Oligonucleotides 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1608-1615

Subventions

Organisme : European Research Council
ID : 681203
Pays : International

Références

Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18, 113–119 (2020).
doi: 10.1038/s41579-019-0278-2
Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359, eaar4120 (2018).
doi: 10.1126/science.aar4120
Rostøl, J. T. & Marraffini, L. (Ph)ighting phages: how bacteria resist their parasites. Cell Host Microbe 25, 184–194 (2019).
Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327–336 (2020).
doi: 10.1038/s41586-019-1894-8
Cohen, D. et al. Cyclic GMP–AMP signalling protects bacteria against viral infection. Nature 574, 691–695 (2019).
doi: 10.1038/s41586-019-1605-5
Davies, B. W., Bogard, R. W., Young, T. S. & Mekalanos, J. J. Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell 149, 358–370 (2012).
doi: 10.1016/j.cell.2012.01.053
Severin, G. B. et al. Direct activation of a phospholipase by cyclic GMP-AMP in El Tor Vibrio cholerae. Proc. Natl Acad. Sci. USA 115, E6048–E6055 (2018).
doi: 10.1073/pnas.1801233115
Whiteley, A. T. et al. Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. Nature 567, 194–199 (2019).
doi: 10.1038/s41586-019-0953-5
Ye, Q. et al. HORMA domain proteins and a Trip13-like ATPase regulate bacterial cGAS-like enzymes to mediate bacteriophage immunity. Mol. Cell 77, 709–722 (2020).
doi: 10.1016/j.molcel.2019.12.009
Lau, R. K. et al. Structure and mechanism of a cyclic trinucleotide-activated bacterial endonuclease mediating bacteriophage immunity. Mol. Cell 77, 723–733 (2020).
doi: 10.1016/j.molcel.2019.12.010
Burroughs, A. M., Zhang, D., Schäffer, D. E., Iyer, L. M. & Aravind, L. Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. Nucleic Acids Res. 43, 10633–10654 (2015).
doi: 10.1093/nar/gkv1267
Lowey, B. et al. CBASS immunity uses CARF-related effectors to sense 3′–5′- and 2′–5′-linked cyclic oligonucleotide signals and protect bacteria from phage infection. Cell 182, 38–49.e17 (2020).
doi: 10.1016/j.cell.2020.05.019
Aravind, L. & Koonin, E. V. The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair. Trends Biochem. Sci. 23, 284–286 (1998).
doi: 10.1016/S0968-0004(98)01257-2
Rosenberg, S. C. & Corbett, K. D. The multifaceted roles of the HORMA domain in cellular signaling. J. Cell Biol. 211, 745–755 (2015).
doi: 10.1083/jcb.201509076
Vader, G. Pch2(TRIP13): controlling cell division through regulation of HORMA domains. Chromosoma 124, 333–339 (2015).
doi: 10.1007/s00412-015-0516-y
Reader, J. S., Metzgar, D., Schimmel, P. & de Crécy-Lagard, V. Identification of four genes necessary for biosynthesis of the modified nucleoside queuosine. J. Biol. Chem. 279, 6280–6285 (2004).
doi: 10.1074/jbc.M310858200
McCarty, R. M., Somogyi, A., Lin, G., Jacobsen, N. E. & Bandarian, V. The deazapurine biosynthetic pathway revealed: in vitro enzymatic synthesis of PreQ(0) from guanosine 5′-triphosphate in four steps. Biochemistry 48, 3847–3852 (2009).
doi: 10.1021/bi900400e
Okada, N. et al. Novel mechanism of post-transcriptional modification of tRNA. Insertion of bases of Q precursors into tRNA by a specific tRNA transglycosylase reaction. J. Biol. Chem. 254, 3067–3073 (1979).
pubmed: 372186
Thiaville, J. J. et al. Novel genomic island modifies DNA with 7-deazaguanine derivatives. Proc. Natl Acad. Sci. USA 113, E1452–E1459 (2016).
doi: 10.1073/pnas.1518570113
David, S. S., O’Shea, V. L. & Kundu, S. Base-excision repair of oxidative DNA damage. Nature 447, 941–950 (2007).
doi: 10.1038/nature05978
McLennan, A. G. The Nudix hydrolase superfamily. Cell. Mol. Life Sci. 63, 123–143 (2006).
doi: 10.1007/s00018-005-5386-7
Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).
doi: 10.1038/nri1391
Botsford, J. L. & Harman, J. G. Cyclic AMP in prokaryotes. Microbiol. Rev. 56, 100–122 (1992).
doi: 10.1128/MMBR.56.1.100-122.1992
Koonin, E. V., Makarova, K. S. & Wolf, Y. I. Evolutionary genomics of defense systems in archaea and bacteria. Annu. Rev. Microbiol. 71, 233–261 (2017).
doi: 10.1146/annurev-micro-090816-093830
van Houte, S., Buckling, A. & Westra, E. R. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol. Mol. Biol. Rev. 80, 745–763 (2016).
doi: 10.1128/MMBR.00011-16
Makarova, K. S. et al. Evolution and classification of the CRISPR–Cas systems. Nat. Rev. Microbiol. 9, 467–477 (2011).
doi: 10.1038/nrmicro2577
Makarova, K. S. et al. An updated evolutionary classification of CRISPR–Cas systems. Nat. Rev. Microbiol. 13, 722–736 (2015).
doi: 10.1038/nrmicro3569
Kazlauskiene, M., Kostiuk, G., Venclovas, Č., Tamulaitis, G. & Siksnys, V. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science 357, 605–609 (2017).
doi: 10.1126/science.aao0100
Niewoehner, O. et al. Type III CRISPR–Cas systems produce cyclic oligoadenylate second messengers. Nature 548, 543–548 (2017).
doi: 10.1038/nature23467
Ofir, G. et al. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat. Microbiol. 3, 90–98 (2018).
doi: 10.1038/s41564-017-0051-0
Goldfarb, T. et al. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J. 34, 169–183 (2015).
doi: 10.15252/embj.201489455
Ofir, G. & Sorek, R. Contemporary phage biology: from classic models to new insights. Cell 172, 1260–1270 (2018).
doi: 10.1016/j.cell.2017.10.045
Lopatina, A., Tal, N. & Sorek, R. Abortive infection: bacterial suicide as an antiviral immune strategy. Annu. Rev. Virol. 7, 1 (2020).
doi: 10.1146/annurev-virology-011620-040628
Chen, I. M. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2019).
doi: 10.1093/nar/gky901
Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).
doi: 10.1038/nbt.3988
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).
doi: 10.1038/msb.2011.75
Steinegger, M. et al. HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinform. 20, 473 (2019).
doi: 10.1186/s12859-019-3019-7
Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).
doi: 10.1093/nar/28.1.235
El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).
doi: 10.1093/nar/gky995
Price, M. N., Dehal, P. S. & Arkin, A. P. Fasttree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).
doi: 10.1093/molbev/msp077
Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).
doi: 10.1093/nar/gkw290

Auteurs

Adi Millman (A)

Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.

Sarah Melamed (S)

Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.

Gil Amitai (G)

Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.

Rotem Sorek (R)

Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel. rotem.sorek@weizmann.ac.il.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Populus Soil Microbiology Soil Microbiota Fungi

Classifications MeSH