Functional characterization of a PROTAC directed against BRAF mutant V600E.


Journal

Nature chemical biology
ISSN: 1552-4469
Titre abrégé: Nat Chem Biol
Pays: United States
ID NLM: 101231976

Informations de publication

Date de publication:
11 2020
Historique:
received: 11 11 2019
accepted: 01 07 2020
pubmed: 12 8 2020
medline: 19 12 2020
entrez: 12 8 2020
Statut: ppublish

Résumé

The RAF family kinases function in the RAS-ERK pathway to transmit signals from activated RAS to the downstream kinases MEK and ERK. This pathway regulates cell proliferation, differentiation and survival, enabling mutations in RAS and RAF to act as potent drivers of human cancers. Drugs targeting the prevalent oncogenic mutant BRAF(V600E) have shown great efficacy in the clinic, but long-term effectiveness is limited by resistance mechanisms that often exploit the dimerization-dependent process by which RAF kinases are activated. Here, we investigated a proteolysis-targeting chimera (PROTAC) approach to BRAF inhibition. The most effective PROTAC, termed P4B, displayed superior specificity and inhibitory properties relative to non-PROTAC controls in BRAF(V600E) cell lines. In addition, P4B displayed utility in cell lines harboring alternative BRAF mutations that impart resistance to conventional BRAF inhibitors. This work provides a proof of concept for a substitute to conventional chemical inhibition to therapeutically constrain oncogenic BRAF.

Identifiants

pubmed: 32778845
doi: 10.1038/s41589-020-0609-7
pii: 10.1038/s41589-020-0609-7
pmc: PMC7862923
mid: NIHMS1652685
doi:

Substances chimiques

Antineoplastic Agents 0
BRAF protein, human EC 2.7.11.1
Extracellular Signal-Regulated MAP Kinases EC 2.7.11.24
Mitogen-Activated Protein Kinase Kinases EC 2.7.12.2
pomalidomide D2UX06XLB5
Protein Kinase Inhibitors 0
Proto-Oncogene Proteins B-raf EC 2.7.11.1
Thalidomide 4Z8R6ORS6L
Ubiquitin 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1170-1178

Subventions

Organisme : NCRR NIH HHS
ID : S10 RR029205
Pays : United States
Organisme : CIHR
ID : FDN 143343
Pays : Canada
Organisme : NIGMS NIH HHS
ID : P41 GM103403
Pays : United States
Organisme : CIHR
ID : FRN 414829
Pays : Canada
Organisme : NIGMS NIH HHS
ID : P30 GM124165
Pays : United States
Organisme : CIHR
ID : FDN 388023
Pays : Canada
Organisme : CIHR
ID : FDN 143277
Pays : Canada
Organisme : CIHR
ID : FDN 144301
Pays : Canada

Commentaires et corrections

Type : CommentIn

Références

Lavoie, H. & Therrien, M. Regulation of RAF protein kinases in ERK signalling. Nat. Rev. Mol. Cell Biol. 16, 281–298 (2015).
pubmed: 25907612 pmcid: 25907612
Simanshu, D. K., Nissley, D. V. & McCormick, F. RAS proteins and their regulators in human disease. Cell 170, 17–33 (2017).
pubmed: 5555610 pmcid: 5555610 doi: 10.1016/j.cell.2017.06.009
Terrell, E. M. & Morrison, D. K. Ras-mediated activation of the Raf family kinases. Cold Spring Harb. Perspect. Med. 9, a033746 (2019).
pubmed: 29358316 pmcid: 6311149 doi: 10.1101/cshperspect.a033746
Nazarian, R. et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468, 973–977 (2010).
pubmed: 21107323 pmcid: 3143360 doi: 10.1038/nature09626
Kemper, K. et al. BRAF(V600E) kinase domain duplication identified in therapy-refractory melanoma patient-derived xenografts. Cell Rep. 16, 263–277 (2016).
pubmed: 27320919 pmcid: 4929150 doi: 10.1016/j.celrep.2016.05.064
Poulikakos, P. I. et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480, 387–390 (2011).
pubmed: 22113612 pmcid: 3266695 doi: 10.1038/nature10662
Poulikakos, P. I. & Rosen, N. Mutant BRAF melanomas—dependence and resistance. Cancer Cell 19, 11–15 (2011).
pubmed: 21251612 doi: 10.1016/j.ccr.2011.01.008
Haarberg, H. E. & Smalley, K. S. Resistance to Raf inhibition in cancer. Drug Disco. Today Technol. 11, 27–32 (2014).
doi: 10.1016/j.ddtec.2013.12.004
Rajakulendran, T., Sahmi, M., Lefrancois, M., Sicheri, F. & Therrien, M. A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461, 542–545 (2009).
pubmed: 19727074 doi: 10.1038/nature08314
Thevakumaran, N. et al. Crystal structure of a BRAF kinase domain monomer explains basis for allosteric regulation. Nat. Struct. Mol. Biol. 22, 37–43 (2015).
pubmed: 25437913 doi: 10.1038/nsmb.2924
Lavoie, H. et al. Inhibitors that stabilize a closed RAF kinase domain conformation induce dimerization. Nat. Chem. Biol. 9, 428–436 (2013).
pubmed: 23685672 pmcid: 4954776 doi: 10.1038/nchembio.1257
Karoulia, Z. et al. An integrated model of Raf inhibitor action predicts inhibitor activity against oncogenic BRAF signaling. Cancer Cell 30, 485–498 (2016).
pubmed: 27523909 pmcid: 5021590 doi: 10.1016/j.ccell.2016.06.024
Yao, Z. et al. BRAF mutants evade ERK-dependent feedback by different mechanisms that determine their sensitivity to pharmacologic inhibition. Cancer Cell 28, 370–383 (2015).
pubmed: 26343582 pmcid: 4894664 doi: 10.1016/j.ccell.2015.08.001
Peng, S. B. et al. Inhibition of RAF isoforms and active dimers by LY3009120 leads to anti-tumor activities in RAS or BRAF mutant cancers. Cancer Cell 28, 384–398 (2015).
pubmed: 26343583 doi: 10.1016/j.ccell.2015.08.002
Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001).
doi: 10.1073/pnas.141230798
Pettersson, M. & Crews, C. M. PROteolysis TArgeting Chimeras (PROTACs)—past, present and future. Drug Disco. Today Technol. 31, 15–27 (2019).
doi: 10.1016/j.ddtec.2019.01.002
Paiva, S. L. & Crews, C. M. Targeted protein degradation: elements of PROTAC design. Curr. Opin. Chem. Biol. 50, 111–119 (2019).
pubmed: 31004963 pmcid: 6930012 doi: 10.1016/j.cbpa.2019.02.022
Waizenegger, I. C. et al. A novel RAF kinase inhibitor with DFG-Out-binding mode: high efficacy in BRAF-mutant tumor xenograft models in the absence of normal tissue hyperproliferation. Mol. Cancer Ther. 15, 354–365 (2016).
pubmed: 26916115 doi: 10.1158/1535-7163.MCT-15-0617
Lu, J. et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol. 22, 755–763 (2015).
pubmed: 26051217 pmcid: 4475452 doi: 10.1016/j.chembiol.2015.05.009
Buckley, D. L. et al. Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1ɑ. Angew. Chem. Int. Ed. Engl. 51, 11463–11467 (2012).
pubmed: 23065727 pmcid: 3519281 doi: 10.1002/anie.201206231
Buckley, D. L. et al. HaloPROTACS: use of small molecule PROTACs to induce degradation of halotag fusion proteins. ACS Chem. Biol. 10, 1831–1837 (2015).
pubmed: 26070106 pmcid: 4629848 doi: 10.1021/acschembio.5b00442
Douglass, E. F. Jr., Miller, C. J., Sparer, G., Shapiro, H. & Spiegel, D. A. A comprehensive mathematical model for three-body binding equilibria. J. Am. Chem. Soc. 135, 6092–6099 (2013).
pubmed: 23544844 pmcid: 3717292 doi: 10.1021/ja311795d
Nissan, M. H. et al. Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence. Cancer Res. 74, 2340–2350 (2014).
pubmed: 24576830 pmcid: 4005042 doi: 10.1158/0008-5472.CAN-13-2625
Corcoran, R. B. et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Disco. 2, 227–235 (2012).
doi: 10.1158/2159-8290.CD-11-0341
Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483, 100–103 (2012).
pubmed: 22281684 doi: 10.1038/nature10868
Drosten, M. et al. Genetic analysis of Ras signalling pathways in cell proliferation, migration and survival. EMBO J. 29, 1091–1104 (2010).
pubmed: 2845279 pmcid: 2845279 doi: 10.1038/emboj.2010.7
Chung, C. I., Zhang, Q. & Shu, X. Dynamic imaging of small molecule induced protein–protein interactions in living cells with a fluorophore phase transition based approach. Anal. Chem. 90, 14287–14293 (2018).
pubmed: 30431263 pmcid: 6298840 doi: 10.1021/acs.analchem.8b03476
Haling, J. R. et al. Structure of the BRAF-MEK complex reveals a kinase activity independent role for BRAF in MAPK signaling. Cancer Cell 26, 402–413 (2014).
pubmed: 25155755 pmcid: 25155755 doi: 10.1016/j.ccr.2014.07.007
Lavoie, H. et al. MEK drives BRAF activation through allosteric control of KSR proteins. Nature 554, 549–553 (2018).
pubmed: 6433120 pmcid: 6433120 doi: 10.1038/nature25478
Medard, G. et al. Optimized chemical proteomics assay for kinase inhibitor profiling. J. Proteome Res. 14, 1574–1586 (2015).
doi: 10.1021/pr5012608
Zhang, L. et al. Characterization of the novel broad-spectrum kinase inhibitor CTx-0294885 as an affinity reagent for mass spectrometry-based kinome profiling. J. Proteome Res. 12, 3104–3116 (2013).
pubmed: 23692254 doi: 10.1021/pr3008495
Park, E. et al. Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes. Nature 575, 545–550 (2019).
pubmed: 31581174 pmcid: 31581174 doi: 10.1038/s41586-019-1660-y
Kondo, Y. et al. Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. Science 366, 109–115 (2019).
pubmed: 31604311 pmcid: 31604311 doi: 10.1126/science.aay0543
Tsai, J. et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl Acad. Sci. USA 105, 3041–3046 (2008).
pubmed: 18287029 doi: 10.1073/pnas.0711741105
Assadieskandar, A. et al. Rigidification dramatically improves inhibitor selectivity for RAF kinases. ACS Med. Chem. Lett. 10, 1074–1080 (2019).
pubmed: 31312411 pmcid: 6627727 doi: 10.1021/acsmedchemlett.9b00194
Subedi, G. P., Johnson, R. W., Moniz, H. A., Moremen, K. W. & Barb, A. High yield expression of recombinant human proteins with the transient transfection of HEK293 cells in suspension. J. Vis. Exp. 2015, e53568 (2015).
Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).
pubmed: 20124692 pmcid: 2815665 doi: 10.1107/S0907444909047337
Assadieskandar, A. et al. Effects of rigidity on the selectivity of protein kinase inhibitors. Eur. J. Med. Chem. 146, 519–528 (2018).
pubmed: 29407977 pmcid: 5816697 doi: 10.1016/j.ejmech.2018.01.053
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
doi: 10.1107/S0021889807021206 pubmed: 19461840 pmcid: 19461840
Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. electronic ligand builder and optimization workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr. D Biol. Crystallogr. 65, 1074–1080 (2009).
pubmed: 19770504 pmcid: 2748967 doi: 10.1107/S0907444909029436
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
doi: 10.1107/S0907444904019158
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
pubmed: 2815670 pmcid: 2815670 doi: 10.1107/S0907444909052925
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
doi: 10.1038/nbt.1511
Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).
doi: 10.1021/pr101065j
Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteom. 13, 2513–2526 (2014).
doi: 10.1074/mcp.M113.031591
Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. Dose–response analysis using R. PLoS ONE 10, e0146021 (2015).
pubmed: 26717316 pmcid: 4696819 doi: 10.1371/journal.pone.0146021
Wingett, S. W. & Andrews, S. FastQ Screen: a tool for multi-genome mapping and quality control. F1000Res 7, 1338 (2018).
pubmed: 30254741 pmcid: 6124377 doi: 10.12688/f1000research.15931.2
Ewels, P., Magnusson, M., Lundin, S. & Kaller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).
pubmed: 27312411 pmcid: 27312411 doi: 10.1093/bioinformatics/btw354
Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25, 1105–1111 (2009).
pubmed: 19289445 pmcid: 2672628 doi: 10.1093/bioinformatics/btp120
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
pubmed: 19261174 pmcid: 2690996 doi: 10.1186/gb-2009-10-3-r25
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Liu, Y. et al. Next-generation RNA sequencing of archival formalin-fixed paraffin-embedded urothelial bladder cancer. Eur. Urol. 66, 982–986 (2014).
pubmed: 25199720 doi: 10.1016/j.eururo.2014.07.045
Galili, T., O’Callaghan, A., Sidi, J. & Sievert, C. heatmaply: an R package for creating interactive cluster heatmaps for online publishing. Bioinformatics 34, 1600–1602 (2018).
pubmed: 29069305 doi: 10.1093/bioinformatics/btx657
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 25516281 doi: 10.1186/s13059-014-0550-8

Auteurs

Ganna Posternak (G)

Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.

Xiaojing Tang (X)

Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.

Pierre Maisonneuve (P)

Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.

Ting Jin (T)

Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Quebec, Montreal, Canada.

Hugo Lavoie (H)

Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Quebec, Montreal, Canada.

Salima Daou (S)

Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.

Stephen Orlicky (S)

Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.

Theo Goullet de Rugy (T)

Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.

Lauren Caldwell (L)

Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.

Kin Chan (K)

Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.

Ahmed Aman (A)

Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.

Michael Prakesch (M)

Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.

Gennady Poda (G)

Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.

Pavel Mader (P)

Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.

Cassandra Wong (C)

Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.

Stefan Maier (S)

Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.

Julia Kitaygorodsky (J)

Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.

Brett Larsen (B)

Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.

Karen Colwill (K)

Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.

Zhe Yin (Z)

Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.

Derek F Ceccarelli (DF)

Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.

Robert A Batey (RA)

Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.

Mikko Taipale (M)

Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada.

Igor Kurinov (I)

Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Argonne, IL, USA.

David Uehling (D)

Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.

Jeff Wrana (J)

Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.

Daniel Durocher (D)

Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.

Anne-Claude Gingras (AC)

Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.

Rima Al-Awar (R)

Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.

Marc Therrien (M)

Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Quebec, Montreal, Canada. marc.therrien@umontreal.ca.
Département de Pathologie et Biologie Cellulaire, University of Montréal, Quebec, Montreal, Canada. marc.therrien@umontreal.ca.

Frank Sicheri (F)

Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada. sicheri@lunenfeld.ca.
Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. sicheri@lunenfeld.ca.
Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada. sicheri@lunenfeld.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH