Modeling oncolytic virus dynamics in the tumor microenvironment using zebrafish.


Journal

Cancer gene therapy
ISSN: 1476-5500
Titre abrégé: Cancer Gene Ther
Pays: England
ID NLM: 9432230

Informations de publication

Date de publication:
08 2021
Historique:
received: 11 03 2020
accepted: 24 06 2020
revised: 14 06 2020
pubmed: 11 7 2020
medline: 23 2 2022
entrez: 11 7 2020
Statut: ppublish

Résumé

We have adapted a zebrafish (Danio rerio) tumor xenograft model for use in the study of oncolytic virotherapy. Following implantation of mammalian cancer cells into the perivitelline space of developing zebrafish embryos, both local and intravenous oncolytic virus treatments produce a tumor-specific infection with measurable antitumor effects. Tumor cells are injected at 48 h post fertilization, with oncolytic virus treatment then being administered 24 h later to allow for an initial period of tumor development and angiogenesis. Confocal fluorescent imaging is used to quantify dynamics within the tumor environment. The natural translucency of zebrafish at the embryo stage, coupled with the availability of strains with fluorescent immune and endothelial cell reporter lines, gives the model broad potential to allow for real time, in vivo investigation of important events within tumors throughout the course of virotherapy. Zebrafish xenografts offer a system with biologic fidelity to processes in human cancer development that influence oncolytic virus efficacy, and to our knowledge this is the first demonstration of the model's use in the context of virotherapy. Compared with other models, our protocol offers a powerful, inexpensive approach to evaluating novel oncolytic viruses and oncolytic virus-based combination therapies, with potential application to investigating the impacts of virotherapy on immune response, tumor vasculature, and metastatic disease.

Identifiants

pubmed: 32647136
doi: 10.1038/s41417-020-0194-7
pii: 10.1038/s41417-020-0194-7
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

769-784

Informations de copyright

© 2020. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Peters C, Grandi P, Nigim F. Updates on oncolytic virus immunotherapy for cancers. Mol Ther - Oncolytics. 2019;12:259–62.
pubmed: 33072862 pmcid: 7536361 doi: 10.1016/j.omto.2019.01.008
Saha D, Martuza RL, Rabkin SD. Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell. 2017;32:253–67.e5.
pubmed: 28810147 pmcid: 5568814 doi: 10.1016/j.ccell.2017.07.006
Dey A, Zhang Y, Castleton AZ, Bailey K, Beaton B, Patel B, et al. The role of neutrophils in measles virus-mediated oncolysis differs between B-cell malignancies and is not always enhanced by GCSF. Mol Ther. 2016;24:184–92.
pubmed: 26278331 doi: 10.1038/mt.2015.149 pmcid: 26278331
Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33:2780–8.
pubmed: 26014293 doi: 10.1200/JCO.2014.58.3377 pmcid: 26014293
Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P, et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene. 2000;19:2–12.
pubmed: 10644974 doi: 10.1038/sj.onc.1203251 pmcid: 10644974
Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med. 1997;3:639–45.
pubmed: 9176490 doi: 10.1038/nm0697-639 pmcid: 9176490
Breitbach CJ, Arulanandam R, De Silva N, Thorne SH, Patt R, Daneshmand M, et al. Oncolytic vaccinia virus disrupts tumor-associated vasculature in humans. Cancer Res. 2013;73:1265–75.
pubmed: 23393196 doi: 10.1158/0008-5472.CAN-12-2687 pmcid: 23393196
Ottolino-Perry K, Tang N, Head R, Ng C, Arulanandam R, Angarita FA, et al. Tumor vascularization is critical for oncolytic vaccinia virus treatment of peritoneal carcinomatosis. Int J Cancer. 2014;134:717–30.
pubmed: 23893655 doi: 10.1002/ijc.28395 pmcid: 23893655
Avci ME, Keskus AG, Targen S, Isilak ME, Ozturk M, Atalay RC, et al. Development of a novel zebrafish xenograft model in ache mutants using liver cancer cell lines. Sci Rep. 2018;8:1570.
pubmed: 29371671 pmcid: 5785479 doi: 10.1038/s41598-018-19817-w
Fazio M, Ablain J, Chuan Y, Langenau DM, Zon LI. Zebrafish patient avatars in cancer biology and precision cancer therapy. Nat Rev Cancer. 2020;20:263–73.
pubmed: 32251397 pmcid: 8011456 doi: 10.1038/s41568-020-0252-3
Nicoli S, Presta M. The zebrafish/tumor xenograft angiogenesis assay. Nat Protoc. 2007;2:2918–23.
pubmed: 18007628 doi: 10.1038/nprot.2007.412 pmcid: 18007628
Rouhi P, Jensen LD, Cao Z, Hosaka K, Lanne T, Wahlberg E, et al. Hypoxia-induced metastasis model in embryonic zebrafish. Nat Protoc. 2010;5:1911–8.
pubmed: 21127485 doi: 10.1038/nprot.2010.150 pmcid: 21127485
Tulotta C, He S, Chen L, Groenewoud A, van der Ent W, Meijer AH, et al. Imaging of human cancer cell proliferation, invasion, and micrometastasis in a zebrafish xenogeneic engraftment model. In: Kawakami K, Patton EE, Orger M, editors. Zebrafish: methods and protocols. New York: Springer New York; 2016. p. 155–69.
Haldi M, Ton C, Seng WL, McGrath P. Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis. 2006;9:139–51.
pubmed: 17051341 doi: 10.1007/s10456-006-9040-2 pmcid: 17051341
Moshal KS, Ferri-Lagneau KF, Haider J, Pardhanani P, Leung T. Discriminating different cancer cells using a zebrafish in vivo assay. Cancers. 2011;3:4102–13.
pubmed: 24213127 pmcid: 3763412 doi: 10.3390/cancers3044102
Jung DW, Oh ES, Park SH, Chang YT, Kim CH, Choi SY et al. A novel zebrafish human tumor xenograft model validated for anti-cancer drug screening. Mol Biosyst. 2012;8:1930–9.
pubmed: 22569777 doi: 10.1039/c2mb05501e pmcid: 22569777
Weintraub A. All eyes on zebrafish. Lab Anim. 2017;46:323–6.
doi: 10.1038/laban.1321
Novoa B, Figueras A. Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases. Adv Exp Med Biol. 2012;946:253–75.
pubmed: 21948373 doi: 10.1007/978-1-4614-0106-3_15 pmcid: 21948373
Britto DD, Wyroba B, Chen W, Lockwood RA, Tran KB, Shepherd PR, et al. Macrophages enhance Vegfa-driven angiogenesis in an embryonic zebrafish tumour xenograft model. Dis Model Mech. 2018;11.
Nicoli S, Ribatti D, Cotelli F, Presta M. Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res. 2007;67:2927–31.
pubmed: 17409396 doi: 10.1158/0008-5472.CAN-06-4268 pmcid: 17409396
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496:498–503.
pubmed: 23594743 pmcid: 3703927 doi: 10.1038/nature12111
Larson JD, Wadman SA, Chen E, Kerley L, Clark KJ, Eide M, et al. Expression of VE-cadherin in zebrafish embryos: a new tool to evaluate vascular development. Dev Dyn. 2004;231:204–13.
pubmed: 15305301 doi: 10.1002/dvdy.20102 pmcid: 15305301
Bennett CM, Kanki JP, Rhodes J, Liu TX, Paw BH, Kieran MW, et al. Myelopoiesis in the zebrafish, Danio rerio. Blood. 2001;98:643–51.
pubmed: 11468162 doi: 10.1182/blood.V98.3.643 pmcid: 11468162
Denton NL, Chen CY, Hutzen B, Currier MA, Scott T, Nartker B, et al. Myelolytic treatments enhance oncolytic herpes virotherapy in models of ewing sarcoma by modulating the immune microenvironment. Mol Ther Oncolytics. 2018;11:62–74.
pubmed: 30505937 pmcid: 6249791 doi: 10.1016/j.omto.2018.10.001
Guo ZS, Lu B, Guo Z, Giehl E, Feist M, Dai E, et al. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. J Immunother Cancer. 2019;7:6.
pubmed: 30626434 pmcid: 6325819 doi: 10.1186/s40425-018-0495-7
Scurr M, Pembroke T, Bloom A, Roberts D, Thomson A, Smart K, et al. Effect of modified vaccinia Ankara-5T4 and low-dose cyclophosphamide on antitumor immunity in metastatic colorectal cancer: a randomized clinical trial. JAMA Oncol. 2017;3:e172579.
pubmed: 28880972 pmcid: 5824319 doi: 10.1001/jamaoncol.2017.2579
Downs-Canner S, Guo ZS, Ravindranathan R, Breitbach CJ, O’Malley ME, Jones HL, et al. Phase 1 study of intravenous oncolytic poxvirus (vvDD) in patients with advanced solid cancers. Mol Ther. 2016;24:1492–501.
pubmed: 27203445 pmcid: 5023393 doi: 10.1038/mt.2016.101
Park SH, Breitbach CJ, Lee J, Park JO, Lim HY, Kang WK, et al. Phase 1b trial of biweekly intravenous Pexa-Vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus in colorectal cancer. Mol Ther. 2015;23:1532–40.
pubmed: 26073886 pmcid: 4817877 doi: 10.1038/mt.2015.109
McCart JA, Ward JM, Lee J, Hu Y, Alexander HR, Libutti SK, et al. Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes. Cancer Res. 2001;61:8751–7.
pubmed: 11751395 pmcid: 11751395
Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. 2002;248:307–18.
pubmed: 12167406 doi: 10.1006/dbio.2002.0711 pmcid: 12167406
Gray C, Loynes CA, Whyte MK, Crossman DC, Renshaw SA, Chico TJ. Simultaneous intravital imaging of macrophage and neutrophil behaviour during inflammation using a novel transgenic zebrafish. Thromb Haemost. 2011;105:811–9.
pubmed: 21225092 doi: 10.1160/TH10-08-0525 pmcid: 21225092
Prajsnar TK, Hamilton R, Garcia-Lara J, McVicker G, Williams A, Boots M, et al. A privileged intraphagocyte niche is responsible for disseminated infection of Staphylococcus aureus in a zebrafish model. Cell Microbiol. 2012;14:1600–19.
pubmed: 22694745 pmcid: 3470706 doi: 10.1111/j.1462-5822.2012.01826.x
Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK, et al. A transgenic zebrafish model of neutrophilic inflammation. Blood. 2006;108:3976–8.
pubmed: 16926288 doi: 10.1182/blood-2006-05-024075
McCart JA, Mehta N, Scollard D, Reilly RM, Carrasquillo JA, Tang N, et al. Oncolytic vaccinia virus expressing the human somatostatin receptor SSTR2: molecular imaging after systemic delivery using 111In-pentetreotide. Mol Ther. 2004;10:553–61.
pubmed: 15336655 doi: 10.1016/j.ymthe.2004.06.158
Subach OM, Cranfill PJ, Davidson MW, Verkhusha VV. An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore. PLoS ONE. 2011;6:e28674.
pubmed: 22174863 pmcid: 3234270 doi: 10.1371/journal.pone.0028674
Arulanandam R, Batenchuk C, Angarita FA, Ottolino-Perry K, Cousineau S, Mottashed A, et al. VEGF-mediated induction of PRD1-BF1/Blimp1 expression sensitizes tumor vasculature to oncolytic virus infection. Cancer Cell. 2015;28:210–24.
pubmed: 26212250 doi: 10.1016/j.ccell.2015.06.009
Breitbach CJ, Paterson JM, Lemay CG, Falls TJ, McGuire A, Parato KA, et al. Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol Ther. 2007;15:1686–93.
pubmed: 17579581 doi: 10.1038/sj.mt.6300215 pmcid: 17579581
Jennings VA, Scott GB, Rose AMS, Scott KJ, Migneco G, Keller B, et al. Potentiating oncolytic virus-induced immune-mediated tumor cell killing using histone deacetylase inhibition. Mol Ther. 2019;27:1139–52.
pubmed: 31053413 pmcid: 6554638 doi: 10.1016/j.ymthe.2019.04.008
Durham NM, Mulgrew K, McGlinchey K, Monks NR, Ji H, Herbst R, et al. Oncolytic VSV primes differential responses to immuno-oncology therapy. Mol Ther. 2017;25:1917–32.
pubmed: 28578991 pmcid: 5542805 doi: 10.1016/j.ymthe.2017.05.006
Fior R, Povoa V, Mendes RV, Carvalho T, Gomes A, Figueiredo N et al. Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proc Natl Acad Sci USA. 2017;114:E8234–43.
pubmed: 28835536 pmcid: 5625889 doi: 10.1073/pnas.1618389114
Barriuso J, Nagaraju R, Hurlstone A. Zebrafish: a new companion for translational research in oncology. Clin Cancer Res. 2015;21:969–75.
pubmed: 25573382 pmcid: 5034890 doi: 10.1158/1078-0432.CCR-14-2921
Vitale G, Gaudenzi G, Dicitore A, Cotelli F, Ferone D, Persani L. Zebrafish as an innovative model for neuroendocrine tumors. Endocr Relat Cancer. 2014;21:R67–83.
pubmed: 24292602 doi: 10.1530/ERC-13-0388 pmcid: 24292602
Lam SH, Wu YL, Vega VB, Miller LD, Spitsbergen J, Tong Y, et al. Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol. 2006;24:73–5.
pubmed: 16327811 doi: 10.1038/nbt1169 pmcid: 16327811
Breitbach CJ, De Silva NS, Falls TJ, Aladl U, Evgin L, Paterson J, et al. Targeting tumor vasculature with an oncolytic virus. Mol Ther. 2011;19:886–94.
pubmed: 21364541 pmcid: 3098639 doi: 10.1038/mt.2011.26
Chan J, Bayliss PE, Wood JM, Roberts TM. Dissection of angiogenic signaling in zebrafish using a chemical genetic approach. Cancer Cell. 2002;1:257–67.
pubmed: 12086862 doi: 10.1016/S1535-6108(02)00042-9 pmcid: 12086862
Weinstein B. Vascular cell biology in vivo: a new piscine paradigm? Trends Cell Biol. 2002;12:439–45.
pubmed: 12220865 doi: 10.1016/S0962-8924(02)02358-9 pmcid: 12220865
Keightley MC, Wang CH, Pazhakh V, Lieschke GJ. Delineating the roles of neutrophils and macrophages in zebrafish regeneration models. Int J Biochem Cell Biol. 2014;56:92–106.
pubmed: 25058313 doi: 10.1016/j.biocel.2014.07.010 pmcid: 25058313
Forn-Cuni G, Varela M, Pereiro P, Novoa B, Figueras A. Conserved gene regulation during acute inflammation between zebrafish and mammals. Sci Rep. 2017;7:41905.
pubmed: 28157230 pmcid: 5291205 doi: 10.1038/srep41905
Varela M, Figueras A, Novoa B. Modelling viral infections using zebrafish: Innate immune response and antiviral research. Antivir Res. 2017;139:59–68.
pubmed: 28025085 doi: 10.1016/j.antiviral.2016.12.013 pmcid: 28025085
Li Y, Li Y, Cao X, Jin X, Jin T. Pattern recognition receptors in zebrafish provide functional and evolutionary insight into innate immune signaling pathways. Cell Mol Immunol. 2017;14:80–9.
pubmed: 27721456 doi: 10.1038/cmi.2016.50 pmcid: 27721456
Goody MF, Sullivan C, Kim CH. Studying the immune response to human viral infections using zebrafish. Dev Comp Immunol. 2014;46:84–95.
pubmed: 24718256 pmcid: 4067600 doi: 10.1016/j.dci.2014.03.025
Davies ML, Parekh NJ, Kaminsky LW, Soni C, Reider IE, Krouse TE, et al. A systemic macrophage response is required to contain a peripheral poxvirus infection. PLoS Pathog. 2017;13:e1006435.
pubmed: 28614386 pmcid: 5484545 doi: 10.1371/journal.ppat.1006435
Masemann D, K”ther K, Kuhlencord M, Varga G, Roth J, Lichty BD. et al. Oncolytic influenza virus infection restores immunocompetence of lung tumor-associated alveolar macrophages. OncoImmunology. 2018;7:e1423171
pubmed: 29721377 pmcid: 5927530 doi: 10.1080/2162402X.2017.1423171
Mejías-Pérez E, Carreño-Fuentes L, Esteban M. Development of a safe and effective vaccinia virus oncolytic vector WR-Δ4 with a set of gene deletions on several viral pathways. Mol Ther - Oncolytics. 2018;8:27–40.
pubmed: 29367944 doi: 10.1016/j.omto.2017.12.002 pmcid: 29367944
Delwar ZM, Kuo Y, Wen YH, Rennie PS, Jia W. Oncolytic virotherapy blockade by microglia and macrophages requires STAT1/3. Cancer Res. 2018;78:718–30.
pubmed: 29118089 doi: 10.1158/0008-5472.CAN-17-0599 pmcid: 29118089
Wu L, Huang TG, Meseck M, Altomonte J, Ebert O, Shinozaki K, et al. rVSV(M Delta 51)-M3 is an effective and safe oncolytic virus for cancer therapy. Hum Gene Ther. 2008;19:635–47.
pubmed: 18533893 pmcid: 2775926 doi: 10.1089/hum.2007.163
Nguyen-Chi M, Laplace-Builhe B, Travnickova J, Luz-Crawford P, Tejedor G, Phan QT, et al. Identification of polarized macrophage subsets in zebrafish. eLife. 2015;4:e07288.
pubmed: 26154973 pmcid: 4521581 doi: 10.7554/eLife.07288
Yan C, Yang Q, Gong Z. Tumor-associated neutrophils and macrophages promote gender disparity in hepatocellular carcinoma in zebrafish. Cancer Res. 2017;77:1395–407.
pubmed: 28202512 doi: 10.1158/0008-5472.CAN-16-2200 pmcid: 28202512
Wiegertjes GF, Wentzel AS, Spaink HP, Elks PM, Fink IR. Polarization of immune responses in fish: the ‘macrophages first’ point of view. Mol Immunol. 2016;69:146–56.
pubmed: 26471699 doi: 10.1016/j.molimm.2015.09.026 pmcid: 26471699
Feng Y, Santoriello C, Mione M, Hurlstone A, Martin P. Live imaging of innate immune cell sensing of transformed cells in zebrafish larvae: parallels between tumor initiation and wound inflammation. PLoS Biol. 2010;8:e1000562.
pubmed: 21179501 pmcid: 3001901 doi: 10.1371/journal.pbio.1000562
Bojarczuk A, Miller KA, Hotham R, Lewis A, Ogryzko NV, Kamuyango AA. et al. Cryptococcus neoformans intracellular proliferation and capsule size determines early macrophage control of infection. Sci Rep.2016;6:1–15.
doi: 10.1038/srep21489
Lee TJ, Nair M, Banasavadi-Siddegowda Y, Liu J, Nallanagulagari T, Jaime-Ramirez AC, et al. Enhancing therapeutic efficacy of oncolytic herpes simplex virus-1 with integrin beta1 blocking antibody OS2966. Mol Cancer Ther. 2019;18:1127–36.
pubmed: 30926634 pmcid: 6548661 doi: 10.1158/1535-7163.MCT-18-0953
Hou W, Chen H, Rojas J, Sampath P, Thorne SH. Oncolytic vaccinia virus demonstrates antiangiogenic effects mediated by targeting of VEGF. Int J Cancer. 2014;135:1238–46.
pubmed: 24474587 pmcid: 4061259 doi: 10.1002/ijc.28747
Wenes M, Shang M, Di Matteo M, Goveia J, Martin-Perez R, Serneels J, et al. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab. 2016;24:701–15.
pubmed: 27773694 doi: 10.1016/j.cmet.2016.09.008 pmcid: 27773694
Wikberg ML, Ling A, Li X, Oberg A, Edin S, Palmqvist R. Neutrophil infiltration is a favorable prognostic factor in early stages of colon cancer. Hum Pathol. 2017;68:193–202.
pubmed: 28882699 doi: 10.1016/j.humpath.2017.08.028 pmcid: 28882699
Forssell J, Oberg A, Henriksson ML, Stenling R, Jung A, Palmqvist R. High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin Cancer Res. 2007;13:1472–9.
pubmed: 17332291 doi: 10.1158/1078-0432.CCR-06-2073 pmcid: 17332291
He S, Lamers GE, Beenakker JW, Cui C, Ghotra VP, Danen EH, et al. Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J Pathol. 2012;227:431–45.
pubmed: 22374800 pmcid: 3504093 doi: 10.1002/path.4013
Sanderson LE, Chien AT, Astin JW, Crosier KE, Crosier PS, Hall CJ. An inducible transgene reports activation of macrophages in live zebrafish larvae. Dev Comp Immunol. 2015;53:63–9.
pubmed: 26123890 doi: 10.1016/j.dci.2015.06.013 pmcid: 26123890
Wu JQ, Zhai J, Li CY, Tan AM, Wei P, Shen LZ et al. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in gastric cancer. J Exp Clin Cancer Res. 2017;36:160.
pubmed: 29141689 pmcid: 5688753 doi: 10.1186/s13046-017-0631-0
Mercatali L, La Manna F, Groenewoud A, Casadei R, Recine F, Miserocchi G. et al. Development of a patient-derived xenograft (PDX) of breast cancer bone metastasis in a zebrafish model. Int J Mol Sci. 2016;17:1375.
pmcid: 5000770 doi: 10.3390/ijms17081375
Wang L, Chen H, Fei F, He X, Sun S, Lv K. et al. Patient-derived heterogeneous xenograft model of pancreatic cancer using zebrafish larvae as hosts for comparative drug assessment. J Vis Exp. 2019;146:e59507.
Gaudenzi G, Albertelli M, Dicitore A, Wurth R, Gatto F, Barbieri F, et al. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in neuroendocrine tumors. Endocrine. 2017;57:214–9.
pubmed: 27481363 doi: 10.1007/s12020-016-1048-9 pmcid: 27481363
Choi SY, Lin D, Gout PW, Collins CC, Xu Y, Wang Y. Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Adv Drug Deliv Rev. 2014;79–80:222–37.
pubmed: 25305336 doi: 10.1016/j.addr.2014.09.009 pmcid: 25305336
Acuna SA, Ottolino-Perry K, Cako B, Tang N, Angarita FA, McCart JA. Oncolytic vaccinia virus as an adjuvant treatment to cytoreductive surgery for malignant peritoneal mesothelioma. Ann Surg Oncol. 2014;21:2259–66.
pubmed: 24719018 doi: 10.1245/s10434-014-3651-4 pmcid: 24719018
Antoine TE, Jones KS, Dale RM, Shukla D, Tiwari V. Zebrafish: modeling for herpes simplex virus infections. Zebrafish. 2014;11:17–25.
pubmed: 24266790 pmcid: 4004044 doi: 10.1089/zeb.2013.0920
Guerra-Varela J, Baz-Martinez M, Da Silva-Alvarez S, Losada AP, Quiroga MI, Collado M, et al. Susceptibility of zebrafish to vesicular stomatitis virus infection. Zebrafish. 2018;15:124–32.
pubmed: 29304309 doi: 10.1089/zeb.2017.1499 pmcid: 29304309
Seo J, Yun CO, Kwon OJ, Choi EJ, Song JY, Choi I et al. A proteoliposome containing apolipoprotein A-I mutant (V156K) enhances rapid tumor regression activity of human origin oncolytic adenovirus in tumor-bearing zebrafish and mice. Mol Cells. 2012;34:143–8.
pubmed: 22851220 pmcid: 3887819 doi: 10.1007/s10059-012-2291-4
Nylund A, Watanabe K, Nylund S, Karlsen M, Saether PA, Arnesen CE et al. Morphogenesis of salmonid gill poxvirus associated with proliferative gill disease in farmed Atlantic salmon (Salmo salar) in Norway. Arch Virol. 2008;153:1299–309.
pubmed: 18521535 doi: 10.1007/s00705-008-0117-7 pmcid: 18521535

Auteurs

David Mealiea (D)

Department of Surgery, University of Toronto, Toronto, Ontario, Canada. d.mealiea@mail.utoronto.ca.
Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada. d.mealiea@mail.utoronto.ca.
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. d.mealiea@mail.utoronto.ca.

Emilie Boudreau (E)

Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.

Naomi De Silva (N)

Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.

Lili Okamoto (L)

Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.

Tiffany Ho (T)

Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.

Jason E Fish (JE)

Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.
Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.

J Andrea McCart (JA)

Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH