The p.P888L SAP97 polymorphism increases the transient outward current (I


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
01 07 2020
Historique:
received: 26 12 2019
accepted: 01 06 2020
entrez: 3 7 2020
pubmed: 3 7 2020
medline: 15 12 2020
Statut: epublish

Résumé

Synapse-Associated Protein 97 (SAP97) is an anchoring protein that in cardiomyocytes targets to the membrane and regulates Na

Identifiants

pubmed: 32612162
doi: 10.1038/s41598-020-67109-z
pii: 10.1038/s41598-020-67109-z
pmc: PMC7329876
doi:

Substances chimiques

DLG1 protein, human 0
Discs Large Homolog 1 Protein 0
Kv1.5 Potassium Channel 0
Shal Potassium Channels 0
Calcium-Calmodulin-Dependent Protein Kinase Type 2 EC 2.7.11.17

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

10707

Investigateurs

Joaquín J Alonso-Martín (JJ)
Fernando Arribas (F)
Felipe Atienza (F)
Antonio Hernández-Madrid (A)
José Luis López-Sendón (JL)
Julián Pérez-Villacastín (J)
Jorge Toquero (J)

Références

Curran, J. & Mohler, P. J. Alternative paradigms for ion channelopathies: disorders of ion channel membrane trafficking and posttranslational modification. Annu Rev Physiol. 77, 505–524 (2015).
doi: 10.1146/annurev-physiol-021014-071838
Balse, E. & Boycott, H. E. Ion channel trafficking: control of ion channel density as a target for arrhythmias? Front Physiol. 8, 808 (2017).
doi: 10.3389/fphys.2017.00808
Godreau, D. et al. Expression, regulation and role of the MAGUK protein SAP-97 in human atrial myocardium. Cardiovasc Res. 56, 433–442 (2002).
doi: 10.1016/S0008-6363(02)00602-8
Fourie, C., Li, D. & Montgomery, J. M. The anchoring protein SAP97 influences the trafficking and localisation of multiple membrane channels. Biochim Biophys Acta. 1838, 589–594 (2014).
doi: 10.1016/j.bbamem.2013.03.015
Leonoudakis, D. et al. Protein trafficking and anchoring complexes revealed by proteomic analysis of inward rectifier potassium channel (Kir2.x)-associated proteins. J Biol Chem. 279, 22331–22346 (2004).
doi: 10.1074/jbc.M400285200
Matamoros, M. et al. Nav1.5 N-terminal domain binding to α1-syntrophin increases membrane density of human Kir2.1, Kir2.2 and Nav1.5 channels. Cardiovasc Res. 110, 279–290 (2016).
doi: 10.1093/cvr/cvw009
Gillet, L. et al. Cardiac-specific ablation of synapse-associated protein SAP97 in mice decreases potassium currents but not sodium current. Heart Rhythm. 12, 181–192 (2015).
doi: 10.1016/j.hrthm.2014.09.057
Vaidyanathan, R., Taffet, S. M., Vikstrom, K. L. & Anumonwo, J. M. Regulation of cardiac inward rectifier potassium current I
Petitprez, S. et al. SAP97 and dystrophin macromolecular complexes determine two pools of cardiac sodium channels Nav1.5 in cardiomyocytes. Circ Res. 108, 294–304 (2011).
doi: 10.1161/CIRCRESAHA.110.228312
Eldstrom, J., Choi, W. S., Steele, D. F. & Fedida, D. SAP97 increases Kv1.5 currents through an indirect N-terminal mechanism. FEBS Lett. 547, 205–211 (2003).
doi: 10.1016/S0014-5793(03)00668-9
Godreau, D., Vranckx, R., Maguy, A., Goyenvalle, C. & Hatem, S. N. Different isoforms of synapse-associated protein, SAP97, are expressed in the heart and have distinct effects on the voltage-gated K
El-Haou, S. et al. Kv4 potassium channels form a tripartite complex with the anchoring protein SAP97 and CaMKII in cardiac myocytes. Circ Res. 104, 758–769 (2009).
Chen, L. Y., Ballew, J. D., Herron, K. J., Rodeheffer, R. J. & Olson, T. M. A common polymorphism in SCN5A is associated with lone atrial fibrillation. Clin Pharmacol Ther. 81, 35–41 (2007).
doi: 10.1038/sj.clpt.6100016
Jiang, Y. F. et al. Association between KCNE1 G38S gene polymorphism and risk of atrial fibrillation: A PRISMA-compliant metaanalysis. Medicine (Baltimore). 96, e7253, (2017).
Giudicessi, J. R., Roden, D. M., Wilde, A. A. M. & Ackerman, M. J. Classification and reporting of potentially proarrhythmic common genetic variation in Long QT syndrome genetic testing. Circulation. 137, 619–630 (2018).
Cruz, F. M. et al. Exercise triggers ARVC phenotype in mice expressing a disease-causing mutated version of human plakophilin-2. J Am Coll Cardiol. 65, 1438–1450 (2015).
Ziegler, T., Ishikawa, K., Hinkel, R. & Kupatt, C. Translational aspects of Adeno-Associated Virus-mediated cardiac gene therapy. Hum Gene Ther. 29, 1341–1351 (2018).
Guo, W. et al. Role of heteromultimers in the generation of myocardial transient outward K
Xu, H., Guo, W. & Nerbonne, J. M. Four kinetically distinct depolarization-activated K
Nerbonne, J. M. & Kass, R. S. Molecular physiology of cardiac repolarization. Physiol Rev. 85, 1205–1253 (2005).
doi: 10.1152/physrev.00002.2005
Caballero, R. et al. In humans, chronic atrial fibrillation decreases the transient outward current and ultrarapid component of the delayed rectifier current differentially on each atria and increases the slow component of the delayed rectifier current in both. J Am Coll Cardiol. 55, 2346–2354 (2010).
doi: 10.1016/j.jacc.2010.02.028
Tessier, S. et al. Regulation of the transient outward K
Sergeant, G. P. et al. Regulation of Kv4.3 currents by Ca
Colinas, O. et al. Differential modulation of Kv4.2 and Kv4.3 channels by calmodulin-dependent protein kinase II in rat cardiac myocytes. Am J Physiol Heart Circ Physiol. 291, H1978–H1987 (2006).
doi: 10.1152/ajpheart.01373.2005
Varga, A. W. et al. Calcium-calmodulin-dependent kinase II modulates Kv4.2 channel expression and upregulates neuronal A-type potassium currents. J Neurosci. 24, 3643–3654 (2004).
doi: 10.1523/JNEUROSCI.0154-04.2004
Pérez-Hernández, M. et al. Brugada syndrome trafficking-defective Nav1.5 channels can trap cardiac Kir2.1/2.2 channels. JCI Insight. 3, pii: 96291; https://doi.org/10.1172/jci.insight.96291 (2018).
Utrilla, R. G. et al. Kir2.1-Nav1.5 channel complexes are differently regulated than Kir2.1 and Nav1.5 channels alone. Front Physiol. 8, 903, (2017).
Wagner, S. et al. Ca/calmodulin kinase II differentially modulates potassium currents. Circ Arrhythm Electrophysiol. 2, 285–294 (2009).
doi: 10.1161/CIRCEP.108.842799
Nikandrova, Y. A., Jiao, Y., Baucum, A. J., Tavalin, S. J. & Colbran, R. J. Ca
Kozakov, D. et al. The ClusPro web server for protein-protein docking. Nat Protoc. 12, 255–278 (2017).
doi: 10.1038/nprot.2016.169
Zhu, J. et al. Guanylate kinase domains of the MAGUK family scaffold proteins as specific phospho-protein-binding modules. EMBO J. 30, 4986–4997 (2011).
doi: 10.1038/emboj.2011.428
Milstein, M. L. et al. Dynamic reciprocity of sodium and potassium channel expression in a macromolecular complex controls cardiac excitability and arrhythmia. Proc Natl Acad Sci USA. 109, E2134–2143 (2012).
Groen, C. & Bähring, R. Modulation of human Kv4.3/KChIP2 channel inactivation kinetics by cytoplasmic Ca
Keskanokwong, T. et al. Dynamic Kv4.3-CaMKII unit in heart: an intrinsic negative regulator for CaMKII activation. Eur Heart J. 32, 305–315 (2011).
doi: 10.1093/eurheartj/ehq469
Wettwer, E., Amos, G. J., Posival, H. & Ravens, U. Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ Res. 75, 473–482 (1994).
doi: 10.1161/01.RES.75.3.473
Johnson, E. K. et al. Differential expression and remodeling of transient outward potassium currents in human left ventricles. Circ Arrhythm Electrophysiol. 11, e005914, (2018).
Pandit, S. V. & Jalife, J. Rotors and the dynamics of cardiac fibrillation. Circ Res. 112, 849–862 (2013).
doi: 10.1161/CIRCRESAHA.111.300158
Antzelevitch, C. et al. J-Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge. Europace. 19, 665–694 (2017).
pubmed: 28431071
Zhao, Z. et al. Role of the transient outward potassium current in the genesis of early afterdepolarizations in cardiac cells. Cardiovasc Res. 95, 308–316 (2012).
doi: 10.1093/cvr/cvs183
Nguyen, T. P., Singh, N., Xie, Y., Qu, Z. & Weiss, J. N. Repolarization reserve evolves dynamically during the cardiac action potential: effects of transient outward currents on early afterdepolarizations. Circ Arrhythm Electrophysiol. 8, 694–702 (2015).
doi: 10.1161/CIRCEP.114.002451
Choi, B. R. et al. Transient outward K

Auteurs

David Tinaquero (D)

Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain.

Teresa Crespo-García (T)

Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain.

Raquel G Utrilla (RG)

Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain.

Paloma Nieto-Marín (P)

Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain.

Andrés González-Guerra (A)

Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.

Marcos Rubio-Alarcón (M)

Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain.

Anabel Cámara-Checa (A)

Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain.

María Dago (M)

Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain.

Marcos Matamoros (M)

Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain.

Marta Pérez-Hernández (M)

Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain.

María Tamargo (M)

Cardiology Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain.

Jorge Cebrián (J)

Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain.

José Jalife (J)

Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Department of Internal Medicine/Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA.

Juan Tamargo (J)

Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain.

Juan Antonio Bernal (JA)

Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.

Ricardo Caballero (R)

Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain. rcaballero@med.ucm.es.

Eva Delpón (E)

Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH