Angelica sinensis polysaccharide prevents mitochondrial apoptosis by regulating the Treg/Th17 ratio in aplastic anemia.


Journal

BMC complementary medicine and therapies
ISSN: 2662-7671
Titre abrégé: BMC Complement Med Ther
Pays: England
ID NLM: 101761232

Informations de publication

Date de publication:
22 Jun 2020
Historique:
received: 08 07 2019
accepted: 16 06 2020
entrez: 24 6 2020
pubmed: 24 6 2020
medline: 15 12 2020
Statut: epublish

Résumé

Angelica sinensis polysaccharide (ASP) is an effective medicine for aplastic anemia (AA). The present study aims to investigate whether mitochondrial apoptosis in aplastic anemia could be corrected by ASP by adjusting an abnormal level of regulatory T cell (Treg)/ IL-17 secreting CD4 T cell (Th17) ratio. BALB/c mice were treated with 5.0 Gy Co60 γ -radiation. Then 2 × 10 The mice treated with the medium dose of ASP for 14 days showed increased white blood cell (WBC), red blood cell (RBC), platelet (PLT), BMNC counts and Lin-Sca-1 + c-Kit+ (LSK) populations viability compared with the mice in the AA group mice. The data showed that ASP decreased damage to the mitochondrial outer membrane, improved the stabilization of the mitochondrial membrane, and corrected the abnormal levels of ROS and mitochondrial-associated apoptosis proteins, including the Bcl-2/Bax ratio and caspase-3 and caspase-9 expression, in BMNCs which were sorted from the bone marrow cells of AA mice. The changes to the p-P38/P38 and Treg/Th17 ratios induced by AA were also reversed by the medium dose of ASP. The same ASP effect including the Bcl-2/Bax and p-P38/P38 ratio, caspase-3 and caspase-9 expression of BMNCs were observed in vivo. The viability of Treg cells were increased by treatment of ASP in vivo. ASP might prevent mitochondrial apoptosis to restore the function of hematopoietic stem cells by suppressing abnormal T-cell immunity in AA.

Sections du résumé

BACKGROUND BACKGROUND
Angelica sinensis polysaccharide (ASP) is an effective medicine for aplastic anemia (AA). The present study aims to investigate whether mitochondrial apoptosis in aplastic anemia could be corrected by ASP by adjusting an abnormal level of regulatory T cell (Treg)/ IL-17 secreting CD4 T cell (Th17) ratio.
METHODS METHODS
BALB/c mice were treated with 5.0 Gy Co60 γ -radiation. Then 2 × 10
RESULTS RESULTS
The mice treated with the medium dose of ASP for 14 days showed increased white blood cell (WBC), red blood cell (RBC), platelet (PLT), BMNC counts and Lin-Sca-1 + c-Kit+ (LSK) populations viability compared with the mice in the AA group mice. The data showed that ASP decreased damage to the mitochondrial outer membrane, improved the stabilization of the mitochondrial membrane, and corrected the abnormal levels of ROS and mitochondrial-associated apoptosis proteins, including the Bcl-2/Bax ratio and caspase-3 and caspase-9 expression, in BMNCs which were sorted from the bone marrow cells of AA mice. The changes to the p-P38/P38 and Treg/Th17 ratios induced by AA were also reversed by the medium dose of ASP. The same ASP effect including the Bcl-2/Bax and p-P38/P38 ratio, caspase-3 and caspase-9 expression of BMNCs were observed in vivo. The viability of Treg cells were increased by treatment of ASP in vivo.
CONCLUSIONS CONCLUSIONS
ASP might prevent mitochondrial apoptosis to restore the function of hematopoietic stem cells by suppressing abnormal T-cell immunity in AA.

Identifiants

pubmed: 32571324
doi: 10.1186/s12906-020-02995-4
pii: 10.1186/s12906-020-02995-4
pmc: PMC7309996
doi:

Substances chimiques

Phytochemicals 0
Polysaccharides 0

Types de publication

Journal Article Retracted Publication

Langues

eng

Sous-ensembles de citation

IM

Pagination

192

Subventions

Organisme : National Natural Science Foundation of China
ID : 81202839
Organisme : Taishan Scholar Project of Shandong Province
ID : tsqn201812145

Commentaires et corrections

Type : RetractionIn

Références

Hoyer KK, Kuswanto WF, Gallo E, Abbas AK. Distinct roles of helper T-cell subsets in a systemic autoimmune disease. Blood. 2009;113:389–95.
doi: 10.1182/blood-2008-04-153346 pubmed: 18815283 pmcid: 2615653
Campbell DJ, Koch MA. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol. 2011;11:119–30.
doi: 10.1038/nri2916 pubmed: 21267013 pmcid: 3289970
Shi J, Ge M, Lu S, Li X, Shao Y, Huang J, Huang Z, Zhang J, Nie N, Zheng Y. Intrinsic impairment of CD4(+)CD25(+) regulatory T cells in acquired aplastic anemia. Blood. 2012;120:1624–32.
doi: 10.1182/blood-2011-11-390708 pubmed: 22797698
Chinnery PF, Schon EA. Mitochondria. J Neurol Neurosurg Psychiatry. 2003;74:1188–99.
doi: 10.1136/jnnp.74.9.1188 pubmed: 12933917 pmcid: 1738655
Gattermann N, Retzlaff S, Wang YL, Hofhaus G, Heinisch J, Aul C, Schneider W. Heteroplasmic point mutations of mitochondrial DNA affecting subunit I of cytochrome C oxidase in two patients with acquired idiopathic sideroblastic anemia. Blood. 1997;90:4961–72.
doi: 10.1182/blood.V90.12.4961 pubmed: 9389715
Gattermann N. Mitochondrial DNA mutations in the hematopoietic system. Leukemia. 2004;18:18–22.
doi: 10.1038/sj.leu.2403209 pubmed: 14614516
Kim HR, Shin MG, Kim MJ, Kim HJ, Shin JH, Suh SP, Ryang DW. Mitochondrial DNA aberrations of bone marrow cells from patients with aplastic anemia. J Korean Med Sci. 2008;23:1062–7.
doi: 10.3346/jkms.2008.23.6.1062 pubmed: 19119453 pmcid: 2610644
Cui X, Wang J, Cai Z, Wang J, Liu K, Cui S, Zhang J, Luo Y, Wang X, Li W, Jing J. Complete sequence analysis of mitochondrial DNA and telomere length in aplastic anemia. Int J Mol Med. 2014;34:1309–14.
doi: 10.3892/ijmm.2014.1898 pubmed: 25119516
Chiu TL, Tanshinone CCS. IIA induces apoptosis in human lung cancer A549 cells through the induction of reactive oxygen species and decreasing the mitochondrial membrane potential. Int J Mol Med. 2010;25:231–6.
pubmed: 20043132
Ning L, Chen CX, Jin RM, Wu YP, Zhang HG, Sun CL, Song CQ, Hu ZB. Effect of components of dang-gui-bu-xue decoction on hematopenia. Zhongguo Zhong Yao Za Zhi. 2002;27:50–3.
pubmed: 12774358
Lee JG, Hsieh WT, Chen SU, Chiang BH. Hematopoietic and myeloprotective activities of an acidic Angelica sinensis polysaccharide on human CD34+ stem cells. J Ethnopharmacol. 2012;139:739–45.
doi: 10.1016/j.jep.2011.11.049 pubmed: 22155392
Xiao H, Xiong L, Song X, Jin P, Chen L, Chen X, Yao H, Wang Y, Wang L. Angelica sinensis polysaccharides ameliorate stress-induced premature senescence of hematopoietic cell via protecting bone marrow stromal cells from oxidative injuries caused by 5-fluorouracil. Int J Mol Sci. 2017;18:E2265.
doi: 10.3390/ijms18112265 pubmed: 29143796
Mu X, Zhang Y, Li J, Xia J, Chen X, Jing P, Song X, Wang L, Wang Y. Angelica sinensis polysaccharide prevents hematopoietic stem cells senescence in D-Galactose-induced aging mouse model. Stem Cells Int. 2017;3508907:2017.
Liu C, Li J, Meng FY, Liang SX, Deng R, Li CK, Pong NH, Lau CP, Cheng SW, Ye JY, Chen JL, Yang ST, Yan H, Chen S, Chong BH, Yang M. Polysaccharides from the root of Angelica sinensis promotes hematopoiesis and thrombopoiesis through the PI3K/AKT pathway. BMC Complement Altern Med. 2010;10:79.
doi: 10.1186/1472-6882-10-79 pubmed: 21176128 pmcid: 3022894
Zhong P, Cui X. Mitochondrial membrane stabilization by Angelica sinensis polysaccharide in murine aplastic anemia. TMR Modern Herbal Med. 2019;2(3):151–7.
Yin LM, Jiang HF, Wang X, et al. Effects of sodium copper chlorophyllin on mesenchymal stem cell function in aplastic anemia mice. Chin J Integr Med. 2013;19(5):360–6.
doi: 10.1007/s11655-012-1210-z pubmed: 23001462
Buckner JH. Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nat Rev Immunol. 2010;10:849–59.
doi: 10.1038/nri2889 pubmed: 21107346 pmcid: 3046807
Miyara M, Sakaguchi S. Human FoxP3(+)CD4(+) regulatory T cells: their knowns and unknowns. Immunol Cell Biol. 2011;89:346–51.
doi: 10.1038/icb.2010.137 pubmed: 21301480
Kotsianidis I, Bouchliou I, Nakou E, Spanoudakis E, Margaritis D, Christophoridou AV, Anastasiades A, Tsigalou C, Bourikas G, Karadimitris A, Tsatalas C. Kinetics, function and bone marrow trafficking of CD4+CD25+FOXP3+ regulatory T cells in myelodysplastic syndromes (MDS). Leukemia. 2009;23:510–8.
doi: 10.1038/leu.2008.333 pubmed: 19020538
de Latour RP, Visconte V, Takaku T, Wu C, Erie AJ, Sarcon AK, Desierto MJ, Scheinberg P, Keyvanfar K, Nunez O, Chen J, Young NS. Th17 immune responses contribute to the pathophysiology of aplastic anemia. Blood. 2010;116:4175–84.
doi: 10.1182/blood-2010-01-266098 pubmed: 20733158 pmcid: 2993623
Balabanian K, Lagane B, Infantino S, Chow KY, Harriague J, Moepps B, Arenzana-Seisdedos F, Thelen M, Bachelerie F. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem. 2005;280:35760–6.
doi: 10.1074/jbc.M508234200 pubmed: 16107333
Zeng Y, Katsanis E. The complex pathophysiology of acquired aplastic anaemia. Clin Exp Immunol. 2015;180:361–70.
doi: 10.1111/cei.12605 pubmed: 25683099 pmcid: 4449765
Liu SL, Zhou YM, Tang DB, et al. Rapamycin ameliorates immune-mediated aplastic anemia by inhibiting the proliferation and metabolism of T cells. Biochem Biophys Res Commun. 2019;518(2):212–8.
doi: 10.1016/j.bbrc.2019.08.034 pubmed: 31434610
Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature. 1988;331:717–9.
doi: 10.1038/331717a0 pubmed: 2830540
Lestienne P, Ponsot G. Kearns-Sayre syndrome with muscle mitochondrial DNA deletion. Lancet. 1988;1:885.
doi: 10.1016/S0140-6736(88)91632-7 pubmed: 2895391
Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, Elsas LJ, Nikoskelainen EK. Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science. 1988;242:1427–30.
doi: 10.1126/science.3201231 pubmed: 3201231
Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39:359–407.
doi: 10.1146/annurev.genet.39.110304.095751 pubmed: 16285865 pmcid: 2821041
Hatfill SJ, Cock CJL, Laubscher R, Downing TG, Kirby R. A role for mitochondrial DNA in the pathogenesis of radiation-induced myelodysplasia and secondary leukemia. Leuk Res. 1993;17:907–13.
doi: 10.1016/0145-2126(93)90036-K pubmed: 8231230
Zhu H, Foretz M, Xie Z, et al. PRKAA1/AMPKα1 is required for autophagy-dependent mitochondrial clearance during erythrocyte maturation. Autophagy. 2014;10(9):1522–34.
doi: 10.4161/auto.29197 pubmed: 24988326 pmcid: 4206532
Martín-Pardillos A, Tsaalbi-Shtylik A, Chen S, et al. Genomic and functional integrity of the hematopoietic system requires tolerance of oxidative DNA lesions. Blood. 2017;130(13):1523–34.
doi: 10.1182/blood-2017-01-764274 pubmed: 28827409 pmcid: 5620415
Yang G, Zhao L, Liu B, et al. Nutritional support contributes to recuperation in a rat model of aplastic anemia by enhancing mitochondrial function. Nutrition. 2018;46:67–77.
doi: 10.1016/j.nut.2017.09.002 pubmed: 29290359
Wang PP, Zhang Y, Dai LQ, Wang KP. Effect of Angelica sinensis polysaccharide-iron complex on iron deficiency anemia in rats. Chin J Integr Med. 2007;13:297–300.
doi: 10.1007/s11655-007-0297-0 pubmed: 18180896
Zhang Y, Cheng Y, Wang N, Zhang Q, Wang K. The action of JAK, SMAD and ERK signal pathways on hepcidin suppression by polysaccharides from Angelica sinensis in rats with iron deficiency anemia. Food Funct. 2014;5:1381–8.
doi: 10.1039/c4fo00006d pubmed: 24752529
Qin J, Liu YS, Liu J, Li J, Tan Y, Li XJ, Magdalou J, Mei QB, Wang H, Chen LB. Effect of Angelica sinensis polysaccharides on osteoarthritis in vivo and in vitro: a possible mechanism to promote proteoglycans synthesis. Evid Based Complement Alternat Med. 2013;794761:2013.
Yang T, Jia M, Meng J, et al. Immunomodulatory activity of polysaccharide isolated from Angelica sinensis. Int J Biol Macromol. 2006;39(4–5):179–84.
doi: 10.1016/j.ijbiomac.2006.02.013 pubmed: 16839602
Gu P, Xu S, Zhou S, et al. Optimization of angelica sinensis polysaccharide-loaded Poly (lactic-co-glycolicacid) nanoparticles by RSM and its immunological activity in vitro. Int J Biol Macromol. 2018;107(Pt A):222–9.
doi: 10.1016/j.ijbiomac.2017.08.176 pubmed: 28867235
Riaz RMS, Zhao H, Lu Y, Lian Z, Li N, Hussain N, Shao D, Jin M, Li Q, Shi J. Anticancer potential against cervix cancer (HeLa) cell line of probiotic Lactobacillus casei and Lactobacillus paracasei strains isolated from human breast milk. Food Funct. 2018;9:2705–15.
doi: 10.1039/C8FO00547H

Auteurs

Zetao Chen (Z)

Department of Gerontology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.

Li Cheng (L)

Department of Acupuncture, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.

Jing Zhang (J)

Department of Science and education, Shandong Mental Health Center, Jinan, 250014, China.

Xing Cui (X)

Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan, 250014, China. cdz45@foxmail.com.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH