Evaluation of anterior oblique ligament tension at the elbow joint angle-a cadaver study.


Journal

Journal of shoulder and elbow surgery
ISSN: 1532-6500
Titre abrégé: J Shoulder Elbow Surg
Pays: United States
ID NLM: 9206499

Informations de publication

Date de publication:
Feb 2021
Historique:
received: 29 12 2019
revised: 21 05 2020
accepted: 24 05 2020
pubmed: 23 6 2020
medline: 29 6 2021
entrez: 23 6 2020
Statut: ppublish

Résumé

The ulnar collateral ligament complex, particularly the anterior oblique ligament (AOL), is mainly a static stabilizer controlling valgus. Various studies have been conducted on the kinematics of elbow joints after ligament cutting; however, no biomechanical studies have measured the tension applied to the ligament. Finite element modeling (FEM) is a very useful tool for biomechanical evaluation of the elbow. However, an accurate FEM of elbow joints cannot be developed without information on the potential tension of ligaments applied during the flexion and extension of elbow joints. We believe that FEM of the elbow joint could be obtained by measuring the material properties and potential tension of the ligament applied during the flexion and extension of the elbow joint. This study aimed to measure the potential tension and material properties of the ligament during the flexion and extension of the elbow, by identifying the relation between ligament length and tension using mechanical testing. We included 10 elbows harvested from 7 fresh-frozen cadavers. The average age of the cadavers was 83.7 ± 5.65 years, and the samples included 8 elbows from 6 male cadavers and 2 elbows from 1 female cadaver. We measured the ligament length at each elbow angle by changing the elbow joint from 0° to 120° in 15° intervals. Thereafter, we extracted the AOL and divided into an anterior band (AB) and a posterior band (PB) and performed a mechanical test to calculate ligament stress. The ligament length of the AB gradually decreased as the flexion angle increased. Conversely, the ligament length of the PB gradually increased as the flexion angle increased. AB and PB lengths were approximately the same between 60° and 75°. The average ligament tension and stress of the AB gradually increased with elbow extension. In contrast, the average ligament tension and stress of the PB gradually increased with elbow flexion. The tension and stress of the AB and PB were balanced around the elbow joint at 60°. The AB was tenser on elbow extension, and the PB was tenser following elbow flexion. Also, the angle at which the AOL stress was equalized was 60°, suggesting that ∼60° is the angle at which the AOL is unlikely to be damaged.

Sections du résumé

BACKGROUND BACKGROUND
The ulnar collateral ligament complex, particularly the anterior oblique ligament (AOL), is mainly a static stabilizer controlling valgus. Various studies have been conducted on the kinematics of elbow joints after ligament cutting; however, no biomechanical studies have measured the tension applied to the ligament. Finite element modeling (FEM) is a very useful tool for biomechanical evaluation of the elbow. However, an accurate FEM of elbow joints cannot be developed without information on the potential tension of ligaments applied during the flexion and extension of elbow joints. We believe that FEM of the elbow joint could be obtained by measuring the material properties and potential tension of the ligament applied during the flexion and extension of the elbow joint. This study aimed to measure the potential tension and material properties of the ligament during the flexion and extension of the elbow, by identifying the relation between ligament length and tension using mechanical testing.
METHODS METHODS
We included 10 elbows harvested from 7 fresh-frozen cadavers. The average age of the cadavers was 83.7 ± 5.65 years, and the samples included 8 elbows from 6 male cadavers and 2 elbows from 1 female cadaver. We measured the ligament length at each elbow angle by changing the elbow joint from 0° to 120° in 15° intervals. Thereafter, we extracted the AOL and divided into an anterior band (AB) and a posterior band (PB) and performed a mechanical test to calculate ligament stress.
RESULTS RESULTS
The ligament length of the AB gradually decreased as the flexion angle increased. Conversely, the ligament length of the PB gradually increased as the flexion angle increased. AB and PB lengths were approximately the same between 60° and 75°. The average ligament tension and stress of the AB gradually increased with elbow extension. In contrast, the average ligament tension and stress of the PB gradually increased with elbow flexion. The tension and stress of the AB and PB were balanced around the elbow joint at 60°.
CONCLUSION CONCLUSIONS
The AB was tenser on elbow extension, and the PB was tenser following elbow flexion. Also, the angle at which the AOL stress was equalized was 60°, suggesting that ∼60° is the angle at which the AOL is unlikely to be damaged.

Identifiants

pubmed: 32565411
pii: S1058-2746(20)30485-7
doi: 10.1016/j.jse.2020.05.033
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

359-364

Informations de copyright

Copyright © 2020 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

Auteurs

Yusuke Matsuura (Y)

Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan. Electronic address: y-m-1211@khaki.plala.or.jp.

Takashi Takamura (T)

Funabashi Orthopaedic Hospital, Chiba, Japan.

Shiro Sugiura (S)

Nishikawa Orthopaedic Clinic, Chiba, Japan.

Yoshiyuki Matsuyama (Y)

Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.

Takane Suzuki (T)

Department of Bioenvironmental Medicine, Chiba University, Chiba, Japan.

Chisato Mori (C)

Department of Bioenvironmental Medicine, Chiba University, Chiba, Japan.

Seiji Ohtori (S)

Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH