In Vivo Evaluation of Indium-111-Labeled 800CW as a Necrosis-Avid Contrast Agent.
Animals
Cell Line, Tumor
Chromatography, High Pressure Liquid
Contrast Media
/ chemistry
Heterocyclic Compounds, 1-Ring
/ chemical synthesis
Indium Radioisotopes
/ chemistry
Indoles
/ chemical synthesis
Mice, Inbred BALB C
Mice, Nude
Necrosis
Polyethylene Glycols
/ chemical synthesis
Radiopharmaceuticals
/ chemical synthesis
Staining and Labeling
Tissue Distribution
Tomography, Emission-Computed, Single-Photon
Cell death
Cyanine dyes
Necrosis-avid contrast agents
SPECT
Tumor necrosis
Journal
Molecular imaging and biology
ISSN: 1860-2002
Titre abrégé: Mol Imaging Biol
Pays: United States
ID NLM: 101125610
Informations de publication
Date de publication:
10 2020
10 2020
Historique:
pubmed:
10
6
2020
medline:
11
8
2021
entrez:
10
6
2020
Statut:
ppublish
Résumé
Current clinical measurements for tumor treatment efficiency rely often on changes in tumor volume measured as shrinkage by CT or MRI, which become apparent after multiple lines of treatment and pose a physical and psychological burden on the patient. Detection of therapy-induced cell death in the tumor can be a fast measure for treatment efficiency. However, there are no reliable clinical tools for detection of tumor necrosis. Previously, we studied the necrosis avidity of cyanine-based fluorescent dyes, which suffered long circulation times before tumor necrosis could be imaged due to low hydrophilicity. We now present the application of radiolabeled 800CW, a commercially available cyanine with high hydrophilicity, to image tumor necrosis in a mouse model. We conjugated 800CW to DOTA via a PEG linker, for labeling with single-photon emission-computed tomography isotope indium-111, yielding [ We successfully prepared a precursor and developed a reliable procedure for labeling 800CW with indium-111. We detected specific [ [
Identifiants
pubmed: 32514888
doi: 10.1007/s11307-020-01511-x
pii: 10.1007/s11307-020-01511-x
pmc: PMC7497446
doi:
Substances chimiques
Contrast Media
0
Heterocyclic Compounds, 1-Ring
0
Indium Radioisotopes
0
Indoles
0
Radiopharmaceuticals
0
1,4,7,10-tetraazacyclododecane- 1,4,7,10-tetraacetic acid
1HTE449DGZ
Polyethylene Glycols
3WJQ0SDW1A
Indium-111
E9NGC49E0T
Types de publication
Evaluation Study
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1333-1341Références
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D’Angiolella V, Dawson TM, Dawson VL, de Laurenzi V, de Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, di Daniele N, di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, el-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25(3):486–541
doi: 10.1038/s41418-017-0012-4
Malhotra R, Lin Z, Vincenz C, Brosius FC (2001) Hypoxia induced apoptosis via two independent pathways in Jurkat cells: differential regulation by glucose. Am J Physiol Cell Physiol 281(5):C1596–C1603
doi: 10.1152/ajpcell.2001.281.5.C1596
Lee SY, Ju MK, Jeon HM et al (2018) Regulation of tumor progression by programmed necrosis. Oxid Med Cell Longev 2018:3537471. https://doi.org/10.1155/2018/3537471
Bredholt G, Mannelqvist M, Stefansson IM, Birkeland E, Bø TH, Øyan AM, Trovik J, Kalland KH, Jonassen I, Salvesen HB, Wik E, Akslen LA (2015) Tumor necrosis is an important hallmark of aggressive endometrial cancer and associates with hypoxia, angiogenesis and inflammation responses. Oncotarget 6(37):39676–39691
doi: 10.18632/oncotarget.5344
Richards CH, Mohammed Z, Qayyum T, Horgan PG, McMillan DC (2011) The prognostic value of histological tumor necrosis in solid organ malignant disease: a systematic review. Future Oncol 7(10):1223–1235
doi: 10.2217/fon.11.99
Silva MT (2010) Secondary necrosis: the natural outcome of the complete apoptotic program. FEBS Lett 584(22):4491–4499
doi: 10.1016/j.febslet.2010.10.046
Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247
doi: 10.1016/j.ejca.2008.10.026
Abdulla S, Saada J, Johnson G, Jefferies S, Ajithkumar T (2015) Tumour progression or pseudoprogression? A review of post-treatment radiological appearances of glioblastoma. Clin Radiol 70(11):1299–1312
doi: 10.1016/j.crad.2015.06.096
Xie B, Stammes MA, van Driel PBAA, Cruz LJ, Knol-Blankevoort VT, Löwik MAM, Mezzanotte L, Que I, Chan A, van den Wijngaard JPHM, Siebes M, Gottschalk S, Razansky D, Ntziachristos V, Keereweer S, Horobin RW, Hoehn M, Kaijzel EL, van Beek ER, Snoeks TJA, Löwik CWGM (2015) Necrosis avid near infrared fluorescent cyanines for imaging cell death and their use to monitor therapeutic efficacy in mouse tumor models. Oncotarget 6(36):39036–39049
doi: 10.18632/oncotarget.5498
Xie B, Tomaszewski MR, Neves AA, Ros S, Hu DE, McGuire S, Mullins SR, Tice D, Sainson RCA, Bohndiek SE, Wilkinson RW, Brindle KM (2017) Optoacoustic detection of early therapy-induced tumor cell death using a targeted imaging agent. Clin Cancer Res 23(22):6893–6903
doi: 10.1158/1078-0432.CCR-17-1029
Stammes MA, Maeda A, Bu J et al (2016) The necrosis-avid small molecule HQ4-DTPA as a multimodal imaging agent for monitoring radiation therapy-induced tumor cell death. Front Oncol 6:221
doi: 10.3389/fonc.2016.00221
Salah S, Lewin J, Amir E, Abdul Razak A (2018) Tumor necrosis and clinical outcomes following neoadjuvant therapy in soft tissue sarcoma: a systematic review and meta-analysis. Cancer Treat Rev 69:1–10
doi: 10.1016/j.ctrv.2018.05.007
Cona M, Li J, Feng Y, Chen F, Verbruggen A, Witte P, Oyen R, Ni Y (2014) Targetability and biodistribution of radioiodinated hypericin: comparison between microdosing and carrier-added preparations. Anti Cancer Agents Med Chem 14(6):852–861
doi: 10.2174/18715206113136660360
Abma E, Peremans K, De Vos F et al (2018) Biodistribution and tolerance of intravenous iodine-131-labelled hypericin in healthy dogs. Vet Comp Oncol 16(3):318–323
doi: 10.1111/vco.12381
Jiang B, Wang J, Ni Y, Chen F (2013) Necrosis avidity: a newly discovered feature of hypericin and its preclinical applications in necrosis imaging. Theranostics 3(9):667–676
doi: 10.7150/thno.6650
Ji Y, Zhan Y, Jiang C, Jiang X, Gao M, Liu W, Li Y, Wang J, Wang Q, Cona MM, Yao N, Wang X, Fang Z, Yin Z, Zhang J, Sun Z, Ni Y (2014) Improvement of solubility and targetability of radioiodinated hypericin by using sodium cholate based solvent in rat models of necrosis. J Drug Target 22(4):304–312
doi: 10.3109/1061186X.2013.867962
Henderson L, Yue QY, Bergquist C, Gerden B, Arlett P (2002) St John’s wort (Hypericum perforatum): drug interactions and clinical outcomes. Br J Clin Pharmacol 54(4):349–356
doi: 10.1046/j.1365-2125.2002.01683.x
Camera L, Kinuya S, Garmestani K, Wu C, Brechbiel MW, Pai LH, McMurry T, Gansow OA, Pastan I, Paik CH (1994) Evaluation of the serum stability and in vivo biodistribution of CHX-DTPA and other ligands for yttrium labeling of monoclonal antibodies. J Nucl Med 35(5):882–889
pubmed: 8176477
Zhao J, Chen J, Ma S, Liu Q, Huang L, Chen X, Lou K, Wang W (2018) Recent developments in multimodality fluorescence imaging probes. Acta Pharm Sin B 8(3):320–338
doi: 10.1016/j.apsb.2018.03.010
Hernandez R, Heskamp S, Rijpkema M, Bos DL, Goldenberg DM, McBride WJ, Morgenstern A, Bruchertseifer F, Cai W, Boerman OC (2017) Preventing radiobleaching of cyanine fluorophores enhances stability of nuclear/NIRF multimodality imaging agents. Theranostics 7(1):1–8
doi: 10.7150/thno.15124
Stammes MA, Knol-Blankevoort VT, Cruz LJ, Feitsma HRIJ, Mezzanotte L, Cordfunke RA, Sinisi R, Dubikovskaya EA, Maeda A, DaCosta RS, Bierau K, Chan A, Kaijzel EL, Snoeks TJA, van Beek ER, Löwik CWGM (2016) Pre-clinical evaluation of a cyanine-based SPECT probe for multimodal tumor necrosis imaging. Mol Imaging Biol 18(16):905–915
doi: 10.1007/s11307-016-0972-7
Keller T, López-Picón FR, Krzyczmonik A, Forsback S, Takkinen JS, Rajander J, Teperi S, Dollé F, Rinne JO, Haaparanta-Solin M, Solin O (2019) Comparison of high and low molar activity TSPO tracer [(18)F]F-DPA in a mouse model of Alzheimer’s disease. J Cereb Blood Flow Metab 40:1012–1020. https://doi.org/10.1177/0271678x19853117
doi: 10.1177/0271678x19853117
pubmed: 31142224
van Manen L, Handgraaf HJM, Diana M, Dijkstra J, Ishizawa T, Vahrmeijer AL, Mieog JSD (2018) A practical guide for the use of indocyanine green and methylene blue in fluorescence-guided abdominal surgery. J Surg Oncol 118(2):283–300
doi: 10.1002/jso.25105
Marshall MV, Draney D, Sevick-Muraca EM, Olive DM (2010) Single-dose intravenous toxicity study of IRDye 800CW in Sprague-Dawley rats. Mol Imaging Biol 12(6):583–594
doi: 10.1007/s11307-010-0317-x
Rosenthal EL, Warram JM, De Boer E et al (2015) Safety and tumor specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin Cancer Res 21(16):3658–3666
doi: 10.1158/1078-0432.CCR-14-3284
Price EW, Orvig C (2014) Matching chelators to radiometal for radiopharmaceuticals. Chem Soc Rev 43(1):260–290
doi: 10.1039/C3CS60304K