Establishment of a simple one-step method for oligodendrocyte progenitor cell preparation from rodent brains.
High throughput screening
Myelination
Oligodendrocyte progenitor cells
PDGF
Primary culture
Journal
Journal of neuroscience methods
ISSN: 1872-678X
Titre abrégé: J Neurosci Methods
Pays: Netherlands
ID NLM: 7905558
Informations de publication
Date de publication:
01 08 2020
01 08 2020
Historique:
received:
12
07
2019
revised:
26
03
2020
accepted:
25
05
2020
pubmed:
2
6
2020
medline:
22
6
2021
entrez:
2
6
2020
Statut:
ppublish
Résumé
Oligodendrocytes, which form myelin, enable rapid and efficient nerve conduction. Destruction of myelin causes demyelinating diseases such as multiple sclerosis. Primary oligodendrocyte progenitor cells (OPCs) from postnatal rodents have been utilized to elucidate the developmental mechanism of oligodendrocytes in vitro. However, this process is complicated and takes up to several weeks. We established a method to culture OPCs from neonatal rat brain in DMEM/F-12 with Stem-Pro, bFGF (10 ng/mL), and rhPDGF (30 ng/mL). The culture, without shaking or immunopanning, became OPC-enriched rather than a mixed glial culture. Immunofluorescent analysis using cell lineage markers suggested that these cells were initially glial progenitors, which gradually changed to OPCs with a few cells further differentiating into oligodendrocytes. Using compounds that promote OPC differentiation, we confirmed that these cells were compatible for high-throughput screening in a 96-well plate format. In co-culture with dorsal root ganglion neuron, OPCs showed myelin sheath-like morphologies. This method was also applicable to mouse OPCs. Although the purity of the OPCs was not comparable to that after immunopanning, most cells were of the oligodendrocyte lineage at 8 DIV, while less than 10% were astrocytes. This method requires mediums with only two growth factors without any specific equipment like antibodies or magnet and takes simple procedures. The simplicity and high yield of our method make it a good choice when working with oligodendrocytes/OPCs. We believe that this method is an affordable protocol for various biological applications without any special techniques or equipment.
Sections du résumé
BACKGROUND
Oligodendrocytes, which form myelin, enable rapid and efficient nerve conduction. Destruction of myelin causes demyelinating diseases such as multiple sclerosis. Primary oligodendrocyte progenitor cells (OPCs) from postnatal rodents have been utilized to elucidate the developmental mechanism of oligodendrocytes in vitro. However, this process is complicated and takes up to several weeks.
NEW METHOD
We established a method to culture OPCs from neonatal rat brain in DMEM/F-12 with Stem-Pro, bFGF (10 ng/mL), and rhPDGF (30 ng/mL). The culture, without shaking or immunopanning, became OPC-enriched rather than a mixed glial culture.
RESULTS
Immunofluorescent analysis using cell lineage markers suggested that these cells were initially glial progenitors, which gradually changed to OPCs with a few cells further differentiating into oligodendrocytes. Using compounds that promote OPC differentiation, we confirmed that these cells were compatible for high-throughput screening in a 96-well plate format. In co-culture with dorsal root ganglion neuron, OPCs showed myelin sheath-like morphologies. This method was also applicable to mouse OPCs.
COMPARISON WITH EXISTING METHODS
Although the purity of the OPCs was not comparable to that after immunopanning, most cells were of the oligodendrocyte lineage at 8 DIV, while less than 10% were astrocytes. This method requires mediums with only two growth factors without any specific equipment like antibodies or magnet and takes simple procedures.
CONCLUSIONS
The simplicity and high yield of our method make it a good choice when working with oligodendrocytes/OPCs. We believe that this method is an affordable protocol for various biological applications without any special techniques or equipment.
Identifiants
pubmed: 32479973
pii: S0165-0270(20)30221-1
doi: 10.1016/j.jneumeth.2020.108798
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
108798Informations de copyright
Copyright © 2020 Elsevier B.V. All rights reserved.