An In Vitro Partial Lesion Model of Differentiated Human Mesencephalic Neurons: Effect of Pericyte Secretome on Phenotypic Markers.


Journal

Journal of molecular neuroscience : MN
ISSN: 1559-1166
Titre abrégé: J Mol Neurosci
Pays: United States
ID NLM: 9002991

Informations de publication

Date de publication:
Nov 2020
Historique:
received: 14 01 2020
accepted: 13 05 2020
pubmed: 31 5 2020
medline: 30 7 2021
entrez: 31 5 2020
Statut: ppublish

Résumé

Parkinson's disease (PD) is characterised by the progressive degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta. Post-mortem data suggests that the loss of DA markers may long precede the cell death, leaving a window to rescue the DA phenotype. Screening for potential neuroprotective or restorative therapies, however, requires that partial lesions of DA neurons can be modelled in vitro. In order to establish a partial lesion model of DA neurons in vitro, we evaluated the effects of different exposure times to 1-methyl-4-phenylpyridinium (MPP

Identifiants

pubmed: 32472394
doi: 10.1007/s12031-020-01589-6
pii: 10.1007/s12031-020-01589-6
pmc: PMC7561585
doi:

Substances chimiques

Culture Media, Conditioned 0
Becaplermin 1B56C968OA
Oxidopamine 8HW4YBZ748
1-Methyl-4-phenylpyridinium R865A5OY8J

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1914-1925

Subventions

Organisme : Aners Stiftelsen
ID : sd

Références

Armulik A et al (2010) Pericytes regulate the blood-brain barrier. Nature 468:557–561. https://doi.org/10.1038/nature09522
doi: 10.1038/nature09522 pubmed: 20944627
Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68:409–427. https://doi.org/10.1016/j.neuron.2010.09.043
doi: 10.1016/j.neuron.2010.09.043 pubmed: 21040844 pmcid: 3056408
Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 7:452–464. https://doi.org/10.1215/S1152851705000232
doi: 10.1215/S1152851705000232 pubmed: 16212810 pmcid: 1871727
Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65:135–172
doi: 10.1016/S0301-0082(01)00003-X
Boix J, Padel T, Paul G (2015) A partial lesion model of Parkinson’s disease in mice--characterization of a 6-OHDA-induced medial forebrain bundle lesion. Behav Brain Res 284:196–206. https://doi.org/10.1016/j.bbr.2015.01.053
doi: 10.1016/j.bbr.2015.01.053 pubmed: 25698603
Bove J, Perier C (2012) Neurotoxin-based models of Parkinson’s disease. Neuroscience 211:51–76. https://doi.org/10.1016/j.neuroscience.2011.10.057
doi: 10.1016/j.neuroscience.2011.10.057 pubmed: 22108613
Crisan M et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313. https://doi.org/10.1016/j.stem.2008.07.003
doi: 10.1016/j.stem.2008.07.003 pubmed: 18786417 pmcid: 18786417
Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–566. https://doi.org/10.1038/nature09513
doi: 10.1038/nature09513 pubmed: 20944625 pmcid: 3241506
Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909
doi: 10.1016/S0896-6273(03)00568-3
Gaceb A, Paul G (2018) Pericyte secretome. Adv Exp Med Biol 1109:139–163. https://doi.org/10.1007/978-3-030-02601-1_11
doi: 10.1007/978-3-030-02601-1_11 pubmed: 30523595
Gaceb A, Ozen I, Padel T, Barbariga M, Paul G (2018) Pericytes secrete pro-regenerative molecules in response to platelet-derived growth factor-BB. J Cereb Blood Flow Metab 38:45–57. https://doi.org/10.1177/0271678X17719645
doi: 10.1177/0271678X17719645 pubmed: 28741407
Guijarro-Munoz I, Cuesta AM, Alvarez-Cienfuegos A, Geng JG, Alvarez-Vallina L, Sanz L (2012) The axonal repellent Slit2 inhibits pericyte migration: potential implications in angiogenesis. Exp Cell Res 318:371–378. https://doi.org/10.1016/j.yexcr.2011.12.005
doi: 10.1016/j.yexcr.2011.12.005 pubmed: 22198087
Guijarro-Munoz I, Compte M, Alvarez-Cienfuegos A, Alvarez-Vallina L, Sanz L (2014) Lipopolysaccharide activates Toll-like receptor 4 (TLR4)-mediated NF-kappaB signaling pathway and proinflammatory response in human pericytes. J Biol Chem 289:2457–2468. https://doi.org/10.1074/jbc.M113.521161
doi: 10.1074/jbc.M113.521161 pubmed: 24307174
Guimaraes-Camboa N et al (2017) Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20:345–359 e345. https://doi.org/10.1016/j.stem.2016.12.006
doi: 10.1016/j.stem.2016.12.006 pubmed: 28111199 pmcid: 5337131
Harischandra DS et al (2019) Enhanced differentiation of human dopaminergic neuronal cell model for preclinical translational research in Parkinson’s disease. Biochim Biophys Acta Mol Basis Dis:165533. https://doi.org/10.1016/j.bbadis.2019.165533
Hoshimaru M, Ray J, Sah DW, Gage FH (1996) Differentiation of the immortalized adult neuronal progenitor cell line HC2S2 into neurons by regulatable suppression of the v-myc oncogene. Proc Natl Acad Sci U S A 93:1518–1523
doi: 10.1073/pnas.93.4.1518
Jellinger KA (1991) Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol 14:153–197
doi: 10.1007/BF03159935
Kang X et al (2017) Cyclooxygenase-2 contributes to oxidopamine-mediated neuronal inflammation and injury via the prostaglandin E2 receptor EP2 subtype. Sci Rep 7:9459. https://doi.org/10.1038/s41598-017-09528-z
doi: 10.1038/s41598-017-09528-z pubmed: 28842681 pmcid: 5573328
Kordower JH et al (2013) Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain 136:2419–2431. https://doi.org/10.1093/brain/awt192
doi: 10.1093/brain/awt192 pubmed: 23884810 pmcid: 3722357
Kowall NW, Hantraye P, Brouillet E, Beal MF, McKee AC, Ferrante RJ (2000) MPTP induces alpha-synuclein aggregation in the substantia nigra of baboons. Neuroreport 11:211–213. https://doi.org/10.1097/00001756-200001170-00041
doi: 10.1097/00001756-200001170-00041 pubmed: 10683860
Langston JW, Forno LS, Rebert CS, Irwin I (1984) Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brain Res 292:390–394. https://doi.org/10.1016/0006-8993(84)90777-7
doi: 10.1016/0006-8993(84)90777-7 pubmed: 6607092
Lau YS, Fung YK, Trobough KL, Cashman JR, Wilson JA (1991) Depletion of striatal dopamine by the N-oxide of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neurotoxicology 12:189–199
pubmed: 1956580
Lindh B, Hokfelt T (1990) Structural and functional aspects of acetylcholine peptide coexistence in the autonomic nervous system. Prog Brain Res 84:175–191
doi: 10.1016/S0079-6123(08)60902-4
Lotharius J, Barg S, Wiekop P, Lundberg C, Raymon HK, Brundin P (2002) Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line. J Biol Chem 277:38884–38894. https://doi.org/10.1074/jbc.M205518200
doi: 10.1074/jbc.M205518200 pubmed: 12145295
Lotharius J, Falsig J, van Beek J, Payne S, Dringen R, Brundin P, Leist M (2005) Progressive degeneration of human mesencephalic neuron-derived cells triggered by dopamine-dependent oxidative stress is dependent on the mixed-lineage kinase pathway. J Neurosci 25:6329–6342. https://doi.org/10.1523/JNEUROSCI.1746-05.2005
doi: 10.1523/JNEUROSCI.1746-05.2005 pubmed: 16000623 pmcid: 6725277
Matsui T et al (1989) Isolation of a novel receptor cDNA establishes the existence of two PDGF receptor genes. Science 243:800–804. https://doi.org/10.1126/science.2536956
doi: 10.1126/science.2536956 pubmed: 2536956
Oschatz E, Prosch H, Schober E, Mostbeck G (2004) Evaluation of a portable ultrasound device immediately after spiral computed tomography. Ultraschall Med 25:433–437. https://doi.org/10.1055/s-2004-813795
doi: 10.1055/s-2004-813795 pubmed: 15597237
Padel T, Ozen I, Boix J, Barbariga M, Gaceb A, Roth M, Paul G (2016) Platelet-derived growth factor-BB has neurorestorative effects and modulates the pericyte response in a partial 6-hydroxydopamine lesion mouse model of Parkinson’s disease. Neurobiol Dis 94:95–105. https://doi.org/10.1016/j.nbd.2016.06.002
doi: 10.1016/j.nbd.2016.06.002 pubmed: 27288154
Paul G, Sullivan AM (2019) Trophic factors for Parkinson’s disease: where are we and where do we go from here? Eur J Neurosci 49:440–452. https://doi.org/10.1111/ejn.14102
doi: 10.1111/ejn.14102 pubmed: 30103283
Paul G, Zachrisson O, Varrone A, Almqvist P, Jerling M, Lind G, Rehncrona S, Linderoth B, Bjartmarz H, Shafer LL, Coffey R, Svensson M, Mercer KJ, Forsberg A, Halldin C, Svenningsson P, Widner H, Frisén J, Pålhagen S, Haegerstrand A (2015) Safety and tolerability of intracerebroventricular PDGF-BB in Parkinson’s disease patients. J Clin Invest 125:1339–1346. https://doi.org/10.1172/JCI79635
doi: 10.1172/JCI79635 pubmed: 25689258 pmcid: 4362250
Paul-Visse G et al (2013) Safety and efficacy of recombinant human platelet derived growth factor BB (rhPDGF-BB) in Parkinson’s disease. Movement Disord 28:S173–S173
Poltl D, Schildknecht S, Karreman C, Leist M (2012) Uncoupling of ATP-depletion and cell death in human dopaminergic neurons. Neurotoxicology 33:769–779. https://doi.org/10.1016/j.neuro.2011.12.007
doi: 10.1016/j.neuro.2011.12.007 pubmed: 22206971
Presgraves SP, Ahmed T, Borwege S, Joyce JN (2004) Terminally differentiated SH-SY5Y cells provide a model system for studying neuroprotective effects of dopamine agonists. Neurotox Res 5:579–598. https://doi.org/10.1007/bf03033178
doi: 10.1007/bf03033178 pubmed: 15111235
Richardson JR et al (2007) Obligatory role for complex I inhibition in the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicol Sci 95:196–204. https://doi.org/10.1093/toxsci/kfl133
doi: 10.1093/toxsci/kfl133 pubmed: 17038483
Salari S, Bagheri M (2019) In vivo, in vitro and pharmacologic models of Parkinson’s disease. Physiol Res 68:17–24. https://doi.org/10.33549/physiolres.933895
doi: 10.33549/physiolres.933895 pubmed: 30433804
Schildknecht S et al (2009) Requirement of a dopaminergic neuronal phenotype for toxicity of low concentrations of 1-methyl-4-phenylpyridinium to human cells. Toxicol Appl Pharmacol 241:23–35. https://doi.org/10.1016/j.taap.2009.07.027
doi: 10.1016/j.taap.2009.07.027 pubmed: 19647008
Seward ME et al (2013) Amyloid-beta signals through tau to drive ectopic neuronal cell cycle re-entry in Alzheimer’s disease. J Cell Sci 126:1278–1286. https://doi.org/10.1242/jcs.1125880
doi: 10.1242/jcs.1125880 pubmed: 23345405 pmcid: 3635465
Smirnova L et al (2016) A LUHMES 3D dopaminergic neuronal model for neurotoxicity testing allowing long-term exposure and cellular resilience analysis. Arch Toxicol 90:2725–2743. https://doi.org/10.1007/s00204-015-1637-z
doi: 10.1007/s00204-015-1637-z pubmed: 26647301
Subramaniam SR, Chesselet MF (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol:106, 17–107, 32. https://doi.org/10.1016/j.pneurobio.2013.04.004
Xu Z, Cawthon D, McCastlain KA, Slikker W Jr, Ali SF (2005) Selective alterations of gene expression in mice induced by MPTP. Synapse 55:45–51. https://doi.org/10.1002/syn.20089
doi: 10.1002/syn.20089 pubmed: 15499605
Yan Y et al (2005) Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells 23:781–790. https://doi.org/10.1634/stemcells.2004-0365
doi: 10.1634/stemcells.2004-0365 pubmed: 15917474 pmcid: 2707939
Yazdani U, German DC, Liang CL, Manzino L, Sonsalla PK, Zeevalk GD (2006) Rat model of Parkinson’s disease: chronic central delivery of 1-methyl-4-phenylpyridinium (MPP+). Exp Neurol 200:172–183. https://doi.org/10.1016/j.expneurol.2006.02.002
doi: 10.1016/j.expneurol.2006.02.002 pubmed: 16546169
Zachrisson O et al (2011) Restorative effects of platelet derived growth factor-BB in rodent models of Parkinson’s disease. J Parkinsons Dis 1:49–63. https://doi.org/10.3233/JPD-2011-0003
doi: 10.3233/JPD-2011-0003 pubmed: 23939256
Zeng XS, Geng WS, Jia JJ (2018) Neurotoxin-induced animal models of parkinson disease: pathogenic mechanism and assessment. ASN Neuro 10:1759091418777438. https://doi.org/10.1177/1759091418777438
doi: 10.1177/1759091418777438 pubmed: 29809058 pmcid: 5977437
Zhang S, Liu XZ, Liu ZL, Wang YM, Hu QL, Ma TZ, Sun SZ (2009) Stem cells modified by brain-derived neurotrophic factor to promote stem cells differentiation into neurons and enhance neuromotor function after brain injury. Chin J Traumatol 12:195–199
pubmed: 19635210
Zhang XM, Yin M, Zhang MH (2014) Cell-based assays for Parkinson’s disease using differentiated human LUHMES cells. Acta Pharmacol Sin 35:945–956. https://doi.org/10.1038/aps.2014.36
doi: 10.1038/aps.2014.36 pubmed: 24989254 pmcid: 4088286

Auteurs

Abderahim Gaceb (A)

Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center and Wallenberg Center for Molecular Medicine, Lund University, Sölvegatan 19, 22184, Lund, Sweden. abderahim.gaceb@med.lu.se.

Marco Barbariga (M)

Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center and Wallenberg Center for Molecular Medicine, Lund University, Sölvegatan 19, 22184, Lund, Sweden.

Gesine Paul (G)

Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center and Wallenberg Center for Molecular Medicine, Lund University, Sölvegatan 19, 22184, Lund, Sweden.
Department of Neurology, Scania University Hospital, 22185, Lund, Sweden.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH