Epidermal growth factor and three-dimensional scaffolds provide conducive environment for differentiation of mouse embryonic stem cells into oocyte-like cells.
Alginates
/ metabolism
Animals
Cell Culture Techniques
/ methods
Cell Differentiation
/ physiology
Cell Proliferation
Cells, Cultured
Coculture Techniques
/ methods
Epidermal Growth Factor
/ metabolism
Female
Germ Cells
/ cytology
Granulosa Cells
/ cytology
Meiosis
Mice
Mouse Embryonic Stem Cells
/ cytology
Oocytes
/ cytology
Oogenesis
Tissue Scaffolds
alginate
cell differentiation
embryonic stem cells
growth factor
scaffold
Journal
Cell biology international
ISSN: 1095-8355
Titre abrégé: Cell Biol Int
Pays: England
ID NLM: 9307129
Informations de publication
Date de publication:
Sep 2020
Sep 2020
Historique:
received:
14
10
2019
revised:
07
04
2020
accepted:
18
05
2020
pubmed:
22
5
2020
medline:
23
6
2021
entrez:
22
5
2020
Statut:
ppublish
Résumé
Three-dimensional (3D) culture provides a biomimicry of the naive microenvironment that can support cell proliferation, differentiation, and regeneration. Some growth factors, such as epidermal growth factor (EGF), facilitate normal meiosis during oocyte maturation in vivo. In this study, a scaffold-based 3D coculture system using purified alginate was applied to induce oocyte differentiation from mouse embryonic stem cells (mESCs). mESCs were induced to differentiate into oocyte-like cells using embryoid body protocol in the two-dimensional or 3D microenvironment in vitro. To increase the efficiency of the oocyte-like cell differentiation from mESCs, we employed a coculture system using ovarian granulosa cells in the presence or absence of epidermal growth factor (+EGF or -EGF) for 14 days and then the cells were assessed for germ cell differentiation, meiotic progression, and oocyte maturation markers. The cultures exposed to EGF in the alginate-based 3D microenvironment showed the highest level of premeiotic (Oct4 and Mvh), meiotic (Scp1, Scp3, Stra8, and Rec8), and oocyte maturation (Gdf9, Cx37, and Zp2) marker genes (p < .05) in comparison to other groups. According to the gene-expression patterns, we can conclude that alginate-based 3D coculture system provided a highly efficient protocol for oocyte-like cell differentiation from mESCs. The data showed that this culture system along with EGF improved the rate of in vitro oocyte-like cell differentiation.
Substances chimiques
Alginates
0
Epidermal Growth Factor
62229-50-9
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1850-1859Subventions
Organisme : Shiraz University of Medical Sciences
ID : 94-7575
Informations de copyright
© 2020 International Federation for Cell Biology.
Références
Alves-Lopes, J. P., Söder, O., & Stukenborg, J.-B. (2017). Testicular organoid generation by a novel in vitro three-layer gradient system. Biomaterials, 130, 76-89.
Andersen, T., Auk-Emblem, P., & Dornish, M. (2015). 3D cell culture in alginate hydrogels. Microarrays, 4(2), 133-161.
Antoni, D., Burckel, H., Josset, E., & Noel, G. (2015). Three-dimensional cell culture: a breakthrough in vivo. International Journal of Molecular Sciences, 16(3), 5517-5527.
Bahmanpour, S., Zarei Fard, N., Talaei-Khozani, T., Hosseini, A., & Esmaeilpour, T. (2015). Effect of BMP 4 preceded by retinoic acid and co-culturing ovarian somatic cells on differentiation of mouse embryonic stem cells into oocyte-like cells. Development, Growth & Differentiation, 57(5), 378-388.
Battista, S., Guarnieri, D., Borselli, C., Zeppetelli, S., Borzacchiello, A., Mayol, L., … Netti, P. A. (2005). The effect of matrix composition of 3D constructs on embryonic stem cell differentiation. Biomaterials, 26(31), 6194-6207.
Belani, M., Purohit, N., Pillai, P., Gupta, S., & Gupta, S. (2014). Modulation of steroidogenic pathway in rat granulosa cells with subclinical Cd exposure and insulin resistance: an impact on female fertility. BioMed Research International, 2014, 13.
Bidarra, S. J., Barrias, C. C., & Granja, P. L. (2014). Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomaterialia, 10(4), 1646-1662.
Bukovsky, A. (2011). Ovarian stem cell niche and follicular renewal in mammals. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 294(8), 1284-1306.
Campbell, K. L. (1979). Ovarian granulosa cells isolated with EGTA and hypertonic sucrose: Cellular integrity and function. Biology of Reproduction, 21(4), 773-786.
Clark, A. T., Bodnar, M. S., Fox, M., Rodriquez, R. T., Abeyta, M. J., Firpo, M. T., & Pera, R. A. R. (2004). Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Human Molecular Genetics, 13(7), 727-739.
Conti, M., Hsieh, M., Park, J.-Y., & Su, Y.-Q. (2006). Role of the epidermal growth factor network in ovarian follicles. Molecular Endocrinology, 20(4), 715-723.
Deluzio, T. G., Seifu, D. G., & Mequanint, K. (2013). 3D scaffolds in tissue engineering and regenerative medicine: Beyond structural templates? Pharmaceutical Bioprocessing, 1(3), 267-281.
Desai, N., Alex, A., AbdelHafez, F., Calabro, A., Goldfarb, J., Fleischman, A., & Falcone, T. (2010). Three-dimensional in vitro follicle growth: Overview of culture models, biomaterials, design parameters and future directions. Reproductive Biology and Endocrinology, 8(1), 119.
Dorak, M. T. (2007). Real-time PCR, (63-80). London, UK: Taylor & Francis.
Dusseault, J., Tam, S. K., Ménard, M., Polizu, S., Jourdan, G., Yahia, L. H., & Hallé, J. P. (2006). Evaluation of alginate purification methods: Effect on polyphenol, endotoxin, and protein contamination. Journal of Biomedical Materials Research. Part A, 76(2), 243-251.
Fabbri, R., Porcu, E., Marsella, T., Primavera, M. R., Cecconi, S., Nottola, S. A., … Flamigni, C. (2000). Human embryo development and pregnancies in an homologous granulosa cell coculture system. Journal of Assisted Reproduction And Genetics, 17(1), 1-12.
Filatov, M., Khramova, Y., & Semenova, M. (2015). In vitro mouse ovarian follicle growth and maturation in alginate hydrogel: Current state of the art. Acta Naturae, 7(2), 48-56.
Ge, C., Yu, M., Petitte, J. N., & Zhang, C. (2009). Epidermal growth factor-induced proliferation of chicken primordial germ cells: Involvement of calcium/protein kinase C and NFKB1. Biology of Reproduction, 80(3), 528-536.
Ghosh, S., Spagnoli, G. C., Martin, I., Ploegert, S., Demougin, P., Heberer, M., & Reschner, A. (2005). Three-dimensional culture of melanoma cells profoundly affects gene expression profile: A high density oligonucleotide array study. Journal of Cellular Physiology, 204(2), 522-531.
Goud, P., Goud, A., Qian, C., Laverge, H., Van der Elst, J., De Sutter, P., & Dhont, M. (1998). In-vitro maturation of human germinal vesicle stage oocytes: Role of cumulus cells and epidermal growth factor in the culture medium. Human Reproduction, 13(6), 1638-1644.
Hayashi, K., Ogushi, S., Kurimoto, K., Shimamoto, S., Ohta, H., & Saitou, M. (2012). Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science, 338, 1222482-1222975.
Hayashi, K., & Surani, M. A. (2009). Self-renewing epiblast stem cells exhibit continual delineation of germ cells with epigenetic reprogramming in vitro. Development, 136(21), 3549-3556.
Hayashi, M., Kawaguchi, T., Durcova-Hills, G., & Imai, H. (2018). Generation of germ cells from pluripotent stem cells in mammals. Reproductive Medicine and Biology, 17(2), 107-114.
Hübner, K., Fuhrmann, G., Christenson, L. K., Kehler, J., Reinbold, R., De La Fuente, R., … Schöler, H. R. (2003). Derivation of oocytes from mouse embryonic stem cells. Science, 300(5623), 1251-1256.
Irie, N., Weinberger, L., Tang, W. W., Kobayashi, T., Viukov, S., Manor, Y. S., … Surani, M. A. (2015). SOX17 is a critical specifier of human primordial germ cell fate. Cell, 160(1-2), 253-268.
Joo, S., Oh, S. H., Sittadjody, S., Opara, E. C., Jackson, J. D., Lee, S. J., … Atala, A. (2016). The effect of collagen hydrogel on 3D culture of ovarian follicles. Biomedical Materials, 11(6), 065009.
Jozefczuk, J., Drews, K., & Adjaye, J. (2012). Preparation of mouse embryonic fibroblast cells suitable for culturing human embryonic and induced pluripotent stem cells. Journal of Visualized Experiments: JoVE, (64), 3854.
Khajavi, N., Akbari, M., Abolhassani, F., Dehpour, A. R., Koruji, M., & Roudkenar, M. H. (2014). Role of somatic testicular cells during mouse spermatogenesis in three-dimensional collagen gel culture system. Cell Journal, 16(1), 79-90.
Khoruzhenko, A. (2011). 2D- and 3D-cell culture. Biopolymers and Cell, 27(1), 17-24.
Kurimoto, K., Yabuta, Y., Hayashi, K., Ohta, H., Kiyonari, H., Mitani, T., … Yamamoto, T. (2015). Quantitative dynamics of chromatin remodeling during germ cell specification from mouse embryonic stem cells. Cell Stem Cell, 16(5), 517-532.
Lee, E., & Fukui, Y. (1995). Effect of various growth factors in a defined culture medium on in vitro development of bovine embryos matured and fertilized in vitro. Theriogenology, 44(1), 71-83.
Lee, J. H., Oh, J. H., Lee, J. H., Kim, M. R., & Min, C. K. (2011). Evaluation of in vitro spermatogenesis using poly(D,L-lactic-co-glycolic acid)(PLGA)-based macroporous biodegradable scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 5(2), 130-137.
Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science, 37(1), 106-126.
Li, Z., & Cui, Z. (2014). Three-dimensional perfused cell culture. Biotechnology Advances, 32(2), 243-254.
Lim, J. J., Shim, M. S., Lee, J. E., & Lee, D. R. (2014). Three-step method for proliferation and differentiation of human embryonic stem cell (hESC)-derived male germ cells. PLoS One, 9(4), e90454.
Lin, J. X, Jia, Y. D, & Zhang, C. Q (2011). Effect of epidermal growth factor on follicle-stimulating hormone-induced proliferation of granulosa cells from chicken prehierarchical follicles. Journal of Zhejiang University. Science. B, 12(11), 875-883.
Matzuk, M. M., Burns, K. H., Viveiros, M. M., & Eppig, J. J. (2002). Intercellular communication in the mammalian ovary: Oocytes carry the conversation. Science, 296(5576), 2178-2180.
Ménard, M., Dusseault, J., Langlois, G., Baille, W. E., Tam, K., Yahia, S., L. H., … Hallé, J. P. (2010). Role of protein contaminants in the immunogenicity of alginates. Journal of Biomedical Materials Research, Part B: Applied Biomaterials, 93(2), 333-340.
Pangas, S. A., Saudye, H., Shea, L. D., & Woodruff, T. K. (2003). Novel approach for the three-dimensional culture of granulosa cell-oocyte complexes. Tissue Engineering, 9(5), 1013-1021.
Park, Y. G., Lee, S. E., Kim, E. Y., Hyun, H., Shin, M. Y., Son, Y. J., … Park, S. P. (2015). Effects of feeder cell types on culture of mouse embryonic stem cell in vitro. Development & Reproduction, 19(3), 119-126.
Qi, Y., Lu, L., Zhou, C., & Luo, B. (2009). Purification of alginate for tissue engineering. This paper presented at 2009 3rd International Conference on IEEE. 1-4. https://doi.org/10.1109/ICBBE.2009.5163263
Qing, T., Shi, Y., Qin, H., Ye, X., Wei, W., Liu, H., … Deng, H. (2007). Induction of oocyte-like cells from mouse embryonic stem cells by co-culture with ovarian granulosa cells. Differentiation, 75(10), 902-911.
Reda, A., Hou, M., Landreh, L., Kjartansdóttir, K. R., Svechnikov, K., Soder, O., & Stukenborg, J. B. (2014). In vitro spermatogenesis-optimal culture conditions for testicular cell survival, germ cell differentiation, and steroidogenesis in rats. Frontiers in Endocrinology, 5, 21.
Reeka, N., Berg, F., & Brucker, C. (1998). Presence of transforming growth factor alpha and epidermal growth factor in human ovarian tissue and follicular fluid. Human Reproduction, 13(8), 2199-2205.
Saitou, M., & Miyauchi, H. (2016). Gametogenesis from pluripotent stem cells. Cell Stem Cell, 18(6), 721-735.
Serebriiskii, I., Castelló-Cros, R., Lamb, A., Golemis, E. A., & Cukierman, E. (2008). Fibroblast-derived 3D matrix differentially regulates the growth and drug-responsiveness of human cancer cells. Matrix Biology, 27(6), 573-585.
Shah, S. M., Saini, N., Ashraf, S., Singh, M. K., Manik, R. S., Singla, S. K., … Chauhan, M. S. (2017). Cumulus cell-conditioned medium supports embryonic stem cell differentiation to germ cell-like cells. Reproduction, Fertility, and Development, 29(4), 679-693.
Singhal, D., Singhal, R., Malik, H., Singh, S., Kumar, S., Kaushik, J., & Malakar, D. (2015). Generation of germ cell-like cells and oocyte-like cells from goat induced pluripotent stem cells. Journal of Stem Cell Research & Therapy, 5(279), 2.
Souza, A., Ferreira, I., Marangoni, K., Bastos, V., & Goulart, V. (2016). Advances in cell culture: More than a century after cultivating cells. Journal of Biotechnology & Biomaterials, 6, 1-4.
Storm, M. P., Orchard, C. B., Bone, H. K., Chaudhuri, J. B., & Welham, M. J. (2010). Three-dimensional culture systems for the expansion of pluripotent embryonic stem cells. Biotechnology and Bioengineering, 107(4), 683-695.
Sun, M., Yuan, Q., Niu, M., Wang, H., Wen, L., Yao, C., … Zhou, F. (2018). Efficient generation of functional haploid spermatids from human germline stem cells by three-dimensional-induced system. Cell Death & Differentiation, 25(4), 747-766.
Sèdes, L., Leclerc, A., Moindjie, H., Cate, R. L., Picard, J.-Y., Di Clemente, N., & Jamin, S. P. (2013). Anti-Müllerian hormone recruits BMPR-IA in immature granulosa cells. PLoS One, 8(11), e81551.
Talaei-Khozani, T., Zareifard, N., Bahmanpour, S., Jaberipour, M., Hosseini, A., & Esmaeilpour, T. (2014). Delayed BMP4 exposure increases germ cell differentiation in mouse embryonic stem cells. Romanian Journal of Morphology & Embryology, 55(2), 297-303.
Tan, H., Wang, J. J., Cheng, S. F., Ge, W., Sun, Y. C., Sun, X. F., … Shen, W. (2016). Retinoic acid promotes the proliferation of primordial germ cell-like cells differentiated from mouse skin-derived stem cells in vitro. Theriogenology, 85(3), 408-418.
Toyooka, Y., Tsunekawa, N., Akasu, R., & Noce, T. (2003). Embryonic stem cells can form germ cells in vitro. Proceedings of the National Academy of Sciences, 100(20), 11457-11462.
West, E. R., Xu, M., Woodruff, T. K., & Shea, L. D. (2007). Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials, 28(30), 4439-4448.
West, J. A., Park, I. H., Daley, G. Q., & Geijsen, N. (2006). In vitro generation of germ cells from murine embryonic stem cells. Nature Protocols, 1(4), 2026-2036.
Wong, M. (2004). Alginates in Tissue Engineering, Biopolymer Methods in Tissue Engineering (pp. 77-86). Springer.
Wu, Y., Ge, C., & Zhang, C. (2008). Epidermal growth factor promotes proliferation of chicken germ cells (PGCs) and differentiation potency of embryoid bodies derived from PGCs. Cell Research, 18(S1), S45.
Xu, M., West, E., Shea, L. D., & Woodruff, T. K. (2006). Identification of a stage-specific permissive in vitro culture environment for follicle growth and oocyte development. Biology of Reproduction, 75(6), 916-923.
Xu, X., Pantakani, D. K., Lührig, S., Tan, X., Khromov, T., Nolte, J., … Engel, W. (2011). Stage-specific germ-cell marker genes are expressed in all mouse pluripotent cell types and emerge early during induced pluripotency. PLoS One, 6(7), e22413.
Yamauchi, K., Hasegawa, K., Chuma, S., Nakatsuji, N., & Suemori, H. (2009). In vitro germ cell differentiation from cynomolgus monkey embryonic stem cells. PLoS One, 4(4), e5338.
Yong, H., Oh, H. I., Lee, S. H., Cheong, H. T., Yang, B. K., & Park, C. K. (2017). Treatment of epidermal growth factor (EGF) enhances nuclear maturation of porcine oocytes and stimulates expression of ER/Golgi transport proteins. Development & Reproduction, 21(2), 131-138.
Zareifard, N., Soleimani, A., Talaei-Khozani, T., & Bahmanpour, S. (2018). Improved BALB/c mice granulosa cell functions using purified alginate scaffold. Iranian Journal of Veterinary Research, 19(3), 182-188.
Zhang, J., Hatakeyama, J., Eto, K., & Abe, S.-i (2014). Reconstruction of a seminiferous tubule-like structure in a 3 dimensional culture system of re-aggregated mouse neonatal testicular cells within a collagen matrix. General and Comparative Endocrinology, 205, 121-132.
Zhang, X., Wang, L., Zhang, X., Ren, L., Shi, W., Tian, Y., … Zhang, T. (2017). The use of KnockOut serum replacement (KSR) in three dimensional rat testicular cells co-culture model: An improved male reproductive toxicity testing system. Food and Chemical Toxicology, 106, 487-495.
Zhou, Q., Wang, M., Yuan, Y., Wang, X., Fu, R., Wan, H., … Zheng, Y. (2016). Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell, 18(3), 330-340.
Zolti, M., Ben-Rafael, Z., Meirom, R., Shemesh, M., Bider, D., Mashiach, S., & Apte, R. N. (1991). Cytokine involvement in oocytes and early embryos. Fertility and Sterility, 56(2), 265-272.