Early and natural embryonic death in Lagostomus maximus: Association with the uterine glands, vasculature, and musculature.
development
embryonic resorption
morphology
rodents
uterus
Journal
Journal of morphology
ISSN: 1097-4687
Titre abrégé: J Morphol
Pays: United States
ID NLM: 0406125
Informations de publication
Date de publication:
07 2020
07 2020
Historique:
received:
09
01
2020
revised:
25
03
2020
accepted:
28
03
2020
pubmed:
8
5
2020
medline:
15
12
2020
entrez:
8
5
2020
Statut:
ppublish
Résumé
The uterus is an organ with great plasticity due to the morphological and physiological changes it experiences during the estrous cycle and pregnancy. In mammals, pregnancy requires diverse sex hormones, growth factors and cytokines, among others, for promoting uterine remodeling to favor implantation, placentation, and embryo/fetus survival and growth. The hystricognathi rodent Lagostomus maximus (plains viscacha) has a high rate of embryonic resorption. The cranial and middle implants are reabsorbed 25-35 days after intercourse while the caudal embryos continue with their development until two precocial offspring are born. So far, no uterine studies of non-pregnant L. maximus females were performed to determine the possible existence of variations in the organ that could be related to the differential survival of the implants. We used ultrasonography, as well as morphological, morphometric, histochemical, lectinhistochemical, and immunohistochemical methods to study differences in the uterine glands (area), vasculature (area), and musculature (thickness) along the uterine horns in non-pregnant females. Along the uterus, all these structures were in more advanced developmental condition in the caudal region as compared to more anterior positions. These regional variations could be decisive in explaining the reason why only caudal implantations come to term. In contrast, no differences in the in the luminal and glandular epithelial cells, nor in the degree of cell proliferation and apoptosis, and hormonal receptor staining were found. These parameters could be related to implantation along the uterine horns, but not to the differential survival of the implants.
Substances chimiques
Hormones
0
Lectins
0
Receptors, Cell Surface
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
710-724Informations de copyright
© 2020 Wiley Periodicals, Inc.
Références
Acuña, F., Tano de la Hoz, M. F., Díaz, A. O., Portiansky, E. L., Barbeito, C. G., & Flamini, M. A. (2018). Histochemistry of the zona pellucida of the ovary of a species with natural polyovulation: Lagostomus maximus (Rodentia, Hystricomorpha, Chinchillidae). Reproduction in Domestic Animals, 54(2), 207-215. https://doi.org/10.1111/rda.13333
Aliabadi, E., Makoolati, Z., Talaei-Khozani, T., & Mesbah Ardekani, F. (2017). Stress affects surface glycoconjugates of the rat endometrium at the time of implantation. Glycoconjugates Journal, 34(5), 671-677. https://doi.org/10.1007/s10719-017-9791-6
Andrabi, S. M., & Maxwell, W. M. (2007). A review on reproductive biotechnologies for conservation of endangered mammalian species. Animal Reproduction Science, 99, 223-243. https://doi.org/10.1016/j.anireprosci.2006.07.002
Annie, L., Gurusubramanian, G., & Roy, V. K. (2019). Estrogen and progesterone dependent expression of visfatin/NAMPT regulates proliferation and apoptosis in mice uterus during estrous cycle. Journal of Steroid Biochemistry and Molecular Biology, 185, 225-236. https://doi.org/10.1016/j.jsbmb.2018.09.010
Bai, Y. Y., Xu, L. B., & Yang, Z. M. (2000). Ulex europeus (UEA-I) binding and hormonal regulation in mouse uterus during early pregnancy, estrous cycle and pseudopregnancy. Chinese Journal of Veterinary Science, 20(6), 601-604.
Barraza, D. E., Zampini, E., Apichela, S. A., Pacheco, J. I., & Argañaraz, M. E. (2018). Changes in mucins and matrix metalloproteases in the endometrium of early pregnant alpacas (Vicugna pacos). Acta Histochemica, 120, 438-445. https://doi.org/10.1016/j.acthis.2018.05.009
Bartol, F. F., Wiley, A. A., Floyd, J. G., Ott, T. L., Bazer, F. W., Gray, C. E., & Spencer, T. E. (1999). Uterine differentiation as a foundation for subsequent fertility. Journal of Reproduction and Fertility Supplement, 54, 287-302.
Bastos, H. B. A., Martinez, M. N., Camozzato, G. C., Estradé, M. J., Barros, E., Vital, C. E., … Matos, R. C. (2019). Proteomic profile of histotroph during early embryo development in mares. Theriogenology, 125, 224-235. https://doi.org/10.1016/j.theriogenology.2018.11.002
Bazer, F. W. (1975). Uterine protein secretions: relationship to development of the conceptus. Journal of Animal Science, 41(5), 1376-1382.
Bazer, F. W., Roberts, R. M., Basha, S. M., Zavy, M. T., Caton, D., & Barron, D. H. (1979). Method for obtaining ovine uterine secretions from unilaterally pregnant ewes. Journal of Animal Science, 49, 1522-1527. https://doi.org/10.2527/jas1979.4961522x
Bazer, F. W., Spencer, T. E., Johnson, G. A., Burghard, R. C., & Wu, G. (2009). Comparative aspects of implantation. Reproduction, 138, 195-209. https://doi.org/10.1530/REP-09-0158
Bazer, F. W., Wu, G., Spencer, T. E., Johnson, G. A., Burhgard, R. C., & Bayless, K. (2010). Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. Molecular Human Reproduction, 16(3), 135-152. https://doi.org/10.1093/molehr/gap095
Bazer, F. W., Spencer, T. E., Johnson, G. A., & Burghard, R. C. (2011). Uterine receptivity to implantation of blasctocysts in mammals. Frontiers in Bioscience, 3, 745-767. https://doi.org/10.2741/s184
Bazer, F. W., Wang, X., Johnson, G. A., & Gouyao, W. U. (2015). Select nutrients and their effects on conceptus development in mammals. Animal Nutrition, 1(3), 85-95. https://doi.org/10.1016/j.aninu.2015.07.005
Bell, S. C. (1983). Decidualization: regional differentiation and associated function. In C. A. Finn (Ed.), Reviews of reproductive biology (pp. 220-271). Oxford, UK: Clarendon Press.
Bidarimath, M., & Tayade, C. (2017). Pregnancy and spontaneous fetal loss: a pig perspective. Molecular Reproduction and Development, 84(9), 856-869. https://doi.org/10.1002/mrd.22847
Blois, S., Tometten, M., Kandil, J., Hagen, E., Klap, B. F., Margni, R. A., & Arck, P. C. (2005). Intercellular adhesion molecule-1/LFA-1 cross talk is a proximate mediator capable of disrupting immune integration and tolerance mechanism at the feto-maternal interface in murine pregnancies. Journal of Immunology, 174(4), 1820-1829. https://doi.org/10.4049/jimmunol.174.4.1820
Bonatelli, M., Carter, A. M., Machado, M. R., De Oliveira, M. F., de Lima, M. C., & Miglino, M. A. (2005). Placentation in the paca (Agouti paca L). Reproduction and Biology Endocrinology, 3, 9. https://doi.org/10.1186/1477-7827-3-9
Brodowska, A., Laszczynska, M., Starczewski, A., Karakiewicz, B., & Brodowski, J. (2007). The localization of estrogen receptor alpha and its function in the ovaries of postmenopausal women. Folia Histochemica et Cytobiologica, 458(4), 325-330.
Burge, B. L. (1966). Vaginal casts passed by a captive porcupine. Journal of Mammalogy, 47, 713-714.
Burton, G. J., Watson, A. L., Hempstock, J., Skepper, J. N., & Jauniaux, E. (2002). Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. Journal of Clininical Endocrinology and Metabolism, 87(6), 2954-2959. https://doi.org/10.1210/jcem.87.6.8563
Burton, G. J., Jauniaux, E., & Charnock-Jones, D. S. (2007). Human early placental development: potential roles of the endometrial glands. Placenta, 28, S64-S69. https://doi.org/10.1016/j.placenta.2007.01.007
Burton, G. J., Scioscia, M., & Rademacher, T. W. (2011). Endometrial secretions: creating a stimulatory microenvironment within the human early placenta and implications for the aetiopathogenesis of preeclampsia. Journal of Reproductive Immunology, 89(2), 118-125. https://doi.org/10.1016/j.jri.2011.02.005
Carson, D. D., Bagchi, I., Dey, S. K., Enders, A. C., Fazleabas, A. T., Lessey, B. A., & Yoshinaga, K. (2000). Embryo implantation. Developmental Biology, 223(2), 217-237. https://doi.org/10.1006/dbio.2000.9767
Clark, G. F. (2015). Functional glycosylation in the human and mammalian uterus. Fertility Research and Practise, 1, 17. https://doi.org/10.1186/s40738-015-0007-0
Collins, L. R., & Eisenberg, J. F. (1972). Notes on the behavior and breeding of pacaranas, Dynomis branickii, in captivity. International Zoo Yearbook, 12, 108-114.
Correira da Silva, G., Bell, S. C., Pringle, J. H., & Teixeira, N. A. (2004). Patterns of uterine cellular proliferation and apoptosis in the implantation site of the rat during pregnancy. Placenta, 25(6), 537-547. https://doi.org/10.1016/j.placenta.2003.11.007
Davidson, A. P., & Baker, T. W. (2009). Reproductive ultrasound of the bitch and queen. Topics in Companion Animal Medicine, 24(2), 55-63. https://doi.org/10.1053/j.tcam.2008.11.002
Deng, L., Li, C. H., Chen, L., Liu, Y., Hou, R., & Zhou, X. (2018). Research advances on embryonic diapause in mammals. Animal Reproduction Science, 198, 1-10. https://doi.org/10.1016/j.anireporsci.2018.09.009
De Paz, P., Sanchez, A. J., Fernandez, J. G., García, C., Chamorro, C. A., & Anel, L. (1994). Ultrastructural localization of lectin receptors in the preimplantation ovine embryo. Anatomical Record, 240(4), 537-544. https://doi.org/10.1002/ar.1092400411
Dey, S. K., Lim, H., Das, S. K., Reese, J., Paria, B. C., Daikoku, T., & Wang, H. (2004). Molecular cues to implantation. Endocrine Reviews, 25(3), 341-373. https://doi.org/10.1210/er.2003-0020
Dharma, S. J., Kholkute, S. D., & Nandedkar, T. D. (2001). Apoptosis in endometrium of mouse during estrous cycle. Indian Journal of Experimental Biology, 39(3), 218-222.
Dorfman, V. B., Inserra, P. I. F., Leopardo, N. P., Halperin, J., & Vitullo, A. D. (2016). The South American plains viscacha, Lagostomus maximus, as a valuable animal model for reproductive studies. JSM Anatomy and Physiology, 1, 1004.
Drews, B., Ringleb, J., Waurich, R., Hildebrandt, T. B., Schröder, K., & Roelling, K. (2013). Free blastocyst and implantation stages in the European brown hare: correlation between ultrasound and histological data. Reproduction Fertility and Development, 20(6), 866-878. https://doi.org/10.1071/RD12062
Ehrlich, S. (1966). Ecological aspects of reproduction in nutria Myocastor coypus. Mammalia, 30(1), 142-152.
Fazleabas, A. T., Hild-Petito, S., & Varhaage, H. G. (1994). Secretory proteins and growth factors of the baboon (Papio anubis) uterus: potential roles in pregnancy. Cell Biology International, 18(12), 1145-1153. https://doi.org/10.1006/cbir.1994.1041
Fenelon, J. C., Lefèvre, P. L., Banerjee, A., & Murphy, B. D. (2016). Regulation of diapause in carnivores. Reproduction in Domestic Animals, 52(2), 12-17. https://doi.org/10.1111/rda.12835
Filippa, V., & Mohamed, F. (2010). Morphological and morphometric changes of pituitary lactotrophos of viscacha (Lagostomus maximus maximus) in relation to reproductive cycle, age, and sex. Anatomical Record, 293(1), 150-161. https://doi.org/10.1002/ar.21013
Flamini, M. A., Barbeito, C. G., Gimeno, E. J., & Portiansky, E. L. (2009). Histology, histochemistry and morphometry of the ovary of the adult plains viscacha (Lagostomus maximus) in different reproductive stages. Acta Zoologica, 90(4), 390-400. https://doi.org/10.1111/j.1463-6395.2008.00386.x
Flamini, M. A., Portiansky, E. L., Favaron, P. O., Martin, D. S., Ambrósio, D. E., Mess, A. M., … Barbeito, C. G. (2011). Chorioallantoic and yolk sac placentation in the plains viscacha (Lagostomus maximus) - A caviomorph rodent with natural polyovulation. Placenta, 32(12), 963-968. https://doi.org/10.1016/j.placenta.2011.09.002
Flamini, M. A., Díaz, A. O., Barbeito, C. G., & Portiansky, E. L. (2012). Morphology, morphometry, histochemistry and lectinhistochemistry of the vagina of the plains viscacha (Lagostomus maximus). Biotechnic and Histochemistry, 87(2), 81-94. https://doi.org/10.3109/10520295.2010.518497
Flamini, M. A., Barbeito, C. G., & Portiansky, E. L. (2019). Morphological characteristics of the uterus and uterine cervix of the plains viscacha (Lagostomus maximus). Acta Zoologica, 00, 1-13. https://doi.org/10.1111/azo.12300
Flamini, M. A., Barreto, R. S. N., Matias, G. S. S., Birbraird, A., de Castro, S. T. H., Barbeito, C. G., & Miglino, M. A. (2020). Key characteristics of the ovary and uterus for reproduction with particular references to poly ovulation in the plains viscacha (Lagostomus maximus, Chinchillidae). Theriogenology, 142, 184-195. https://doi.org/10.1016/j.theriogenology.2019.09.043
Fouladi-Nashta, A. A., Jones, C. J., Nijjar, N., Mohamet, L., Smith, A., Chambers, I., & Kimber, S. J. (2005). Characterization of the uterine phenotype during the peri-implantation period for LIF-null, MF1 strain mice. Developmental Biology, 281(1), 1-21. https://doi.org/10.1016/j.ydbio.2005.01.033
Givens, M. D., & Marley, M. S. D. (2008). Infectious causes of embryonic and fetal mortality. Theriogenology, 70(3), 270-285. https://doi.org/10.1016/j.theriogenology.2008.04.018
Goldestein, I. J., & Hayes, C. E. (1978). The lectins: carbohydrate-binding proteins of plants and animals. Advances in Carbohydrate Chemistry and Biochemistry, 35, 127-340. https://doi.org/10.1016/s0065-2318(08)60220-6
Guo, B., Duan, C. C., Wang, Q. Y., & Yue, Z. P. (2013). Differential expression and regulation of PNA and UEA-1 bindings in rabbit uterus during preimplantation period. Microscopy Research and Technique, 76(4), 398-403. https://doi.org/10.1002/jemt.22179
Gray, C. A., Taylor, K. M., Ramsey, W. S., Hill, J. R., Bazer, F. W., Bartol, F. F., & Spencer, T. E. (2001). Endometrial glands are required for preimplantation conceptus elongation and survival. Biology of Reproduction, 64(6), 1608-1613. https://doi.org/10.1095/biolreprod64.6.1608
Hautier, L., Lebrun, R., Saksiri, S., Michaux, J., Vianey-Liaud, M., & Marivaux, L. (2011). Hystricognathy vs sciurognathy in the rodent jaw: a new morphometric assessment of hystricognathy applied to the living fossil Laonastes (Diatomyidae). PLoS One, 6(4), e18698. https://doi.org/10.1371/journal.pone.0018698
Hayssen, V., & Orr, T. J. (2017). Reproduction in mammals: The female perspective. Baltimore, Maryland: Johns Hopkins University Press.
Hempstock, J., Cindrova-Davies, T., Jauniaux, E., & Burton, G. J. (2004). Endometrial glands as a source of nutrients, growth factors and cytokines during the first trimester of human pregnancy: a morphological and immunohistochemical study. Reproductive Biology and Endocrinology, 2, 58. https://doi.org/10.1186/1477-7827-2-58
Jackson, J. E. (1989). Reproductive parameters of the plains viscacha (Lagostomus maximus) in San Luis Province, Argentina. Vida Silvestre Neotropical, 2, 57-62.
Janot, M., Cortes-Dubly, M. L., Rodriguez, S., & Huyhn-Do, U. (2014). Bilateral uterine vessel ligation as a model of intrauterine growth restriction in mice. Reproductive Biology and Endocrinology, 12, 62. https://doi.org/10.1186/1477-7827-12-62
Jensen, F., Willis, M. A., Leopardo, N. P., Espinosa, M. B., & Vitullo, A. D. (2008). The ovary of the gestating South American plains viscacha (Lagostomus maximus): suppressed apoptosis and corpora lutea persistence. Biology of Reproduction, 79(2), 240-246. https://doi.org/10.1095/biolreprod.107.065326
Jones, C. J., Ortiz, M. E., Croxatto, H. B., Manzur, A., Slevin, G., & Aplin, J. D. (2001). Muc1 and glycan expression in the oviduct and endometrium of a New World monkey, Cebus paella. Biology of Reproduction, 64(5), 1535-1544. https://doi.org/10.1095/biolreprod64.5.1535
Jones, C. J., Skepper, J. N., Renfree, M. B., & Aplin, J. D. (2014). Trophoblast specialisations during pregnancy in the tammar wallaby, Macropus eugenii: a morphological and lectin histochemical study. Placenta, 35(7), 467-475. https://doi.org/10.1016/j.placenta.2014.03.018
Jones, C. J. P., Allen, W. R. T., & Wilsher, S. (2019). A preliminary study of the heterogeneity in endometrial morphology and glycosylation in the uterine horns of the non-pregnant impala (Aepycero smelampus). Animal Reproduction Science, 204, 66-75. https://doi.org/10.1016/j.anireprosci.2019.03.006
Kanashiro, C., Santos, T. C., Miglino, M. A., Mess, A. M., & Carter, A. M. (2009). Growth and development of the placenta in the capybara (Hydrochaeris hydrochaeris). Reproductive Biology and Endocrinology, 7, 57. https://doi.org/10.1186/1477-7827-7-57
Kane, M. T., Morgan, P. M., & Coonan, C. (1997). Peptide growth factors and preimplantation development. Human Reproductive Update, 3(2), 137-157. https://doi.org/10.1093/humupd/3.2.137
Kaulenas, A., Parkington, H. C., & Coleman, H. A. (1991). Response of the rat myometrium to phenylephrine in early pregnancy and the effects of 6-hydroxydopamine. British Journal of Pharmacology, 103(2), 1429-1434. https://doi.org/10.1111/j.1476-5381.1991.tb09806.x
Kelleher, A. M., Milano-Foster, J., Behura, S., & Spencer, T. E. (2018). Uterine glands coordinate on-time embryo implantation and impact endometrial decidualization for pregnancy success. Nature Communications, 9(1), 2435. https://doi.org/10.1038/s41467-018-04848-8
Kelleher, A. M., DeMayo, F. J., & Spencer, T. E. (2019). Uterine glands: developmental biology and functional roles in pregnancy. Endocrine Reviews, 40(5), 1424-1445. https://doi.org/10.1210/er.2018-00281
Khoza, T., & Hosie, M. (2008). Clomiphene citrate modulates the expression of endometrial carbohydrates (especially N-acetyl-d-glucosamine and sialic acid) in pseudopregnant rats. Theriogenology, 70(4), 612-621. https://doi.org/10.1016/j.theriogenology.2008.04.008
Knapczyk, K., Duda, M., Durlej, M., Galas, J., Koziorowski, M., & Slomczynska, M. (2008). Expression of estrogen receptor α (ERα) and estrogen receptor β (ERβ) in the ovarian follicles and corpora lutea of pregnant swine. Domestic Animal Endocrinology, 35(2), 170-179. https://doi.org/10.1016/j.domaniend.2008.05.001
Knapczyk, K., Durlej, M., Duda, M., Czernichowska-Ferreira, K., Tabecka-Lonczynska, A., & Slomczynska, M. (2011). Expression of oestrogen receptor α and oestrogen receptor β in the uterus of the pregnant swine. Reproduction in Domestic Animals, 46(1), 1-7. https://doi.org/10.1111/j.1439-0531.2009.01505.x
Lai, M. D., Lee, L. R., Cheng, K. S., & Wing, L. Y. (2000). Expression of proliferating cell nuclearantigen in luminal epithelium during the growth and regression of rat uterus. Journal of Endocrinology, 166(1), 87-93. https://doi.org/10.1677/joe.0.1660087
Leitner, M., Aurich, J. E., Galabova, G., Aurich, C., & Walter, I. (2003). Lectin binding patterns in normal canine endometrium and in bitches with pyometra and cystic endometrial hyperplasia. Histology and Histopathology, 18(3), 787-795. https://doi.org/10.14670/HH-18.787
Lev, R. A., & Spicer, S. S. (1964). Specific staining of sulphate groups with Alcian Blue at low pH. Journal of Histochemistry and Cytochemestry, 12, 309. https://doi.org/10.1177/12.4.309
Linton, N. F., Wessels, J. M., Cnossen, S. A., van den Heuvel, M. J., Croy, B. A., & Tayade, C. (2010). Angiogenic DC-SIGN(þ) cells are present at the attachment sites of epitheliochorial placentae. Immunology and Cell Biology, 88(1), 63-71. https://doi.org/10.1038/icb.2009.62
Macklon, N. S., Geraedts, J. P., & Fauser, B. C. (2002). Conception to ongoing pregnancy: the ‘black box’ of early pregnancy loss. Human Reproduction Update, 8(4), 333-343. https://doi.org/10.1093/humupd/8.4.333
McLaren, A., & Michie, D. (1959). Superpregnancy in the mouse. Implantation and foetal mortality after induced superovulation in females at various ages. Journal of Experimental Biology, 36, 281.
McManus, J. F. A. (1948). Histological and histochemical uses of periodic acid. Stain Technology, 23(3), 99-108. https://doi.org/10.3109/10520294809106232
Mendoza, G., Echevarría, L., Llerena, C., Castro, A., Domínguez, M., Gómez, S., … Barbeito, C. G. (2013). Comparación morfológica entre el útero fetal y el útero adulto de la alpaca (Vicugna pacos) y la llama (Lama glama). Salud Tecnología Veterinaria, 1, 1-6. https://doi.org/10.20453/stv.2013.103
Mess, A. (2003). Evolutionary transformations of chorioallantoic placental characters in Rodentia with special reference to hystricognath species. Journal of Experimental Zoology. Part A Comparative Experimental Biology, 299(1), 78-98. https://doi.org/10.1002/jez.a.10292
Mess, A., Zaki, N., Kadyrov, M., Korr, H., & Kaufmann, P. (2007). Caviomorph placentation as a model for trophoblast invasion. Placenta, 28(11-12), 1234-1238. https://doi.org/10.1016/j.placenta.2007.08.003
Miglino, M. A., Carter, A. M., dos Santos Ferraz, R. H., & Fernandez Machado, M. R. (2002). Placentation in the capybara (Hydrochaerus hydrochaeris), agouti (Dasyprocta aguti) and paca (Agouti paca). Placenta, 23(5), 416-428. https://doi.org/10.1053/plac.2002.0806
Moser, G., Gauster, M., Orendi, K., Glasner, A., Theuerkauf, R., & Huppertz, B. (2010). Endoglandular trophoblast, an alternative route of trophoblast invasion? Analysis with novel confrontation co-culture models. Human Reproduction, 25(5), 1127-1136. https://doi.org/10.1093/humrep/deq035
Moser, G., Orendi, K., Gauster, M., Siwetz, M., Helige, C., & Huppertz, B. (2011). The art of identification of extravillous trophoblast. Placenta, 32(2), 197-199. https://doi.org/10.1016/j.placenta.2010.11.008
Moser, G., Weiss, G., Gauster, M., Sundl, M., & Huppertz, B. (2015). Evidence from the very beginning: endoglandular trophoblasts penetrate and replace uterine glands in situ and in vitro. Human Reproduction, 30(12), 2747-2757. https://doi.org/10.1093/humrep/dev266
Moser, G., Weiss, G., Sundl, M., Gauster, M., Siwetz, M., Lang-Olip, I., & Huppertz, B. (2016). Extravillous trophoblasts invade more than uterine arteries: evidence for the invasion of uterine veins. Histochemistry and Cell Biology, 147(3), 353-366. https://doi.org/10.1007/s00418-016-1509-5
Moser, G., & Huppertz, B. (2017). Implantation and extravillous trophoblast invasion: from rare archival specimens to modern biobanking. Placenta, 56, 19-26. https://doi.org/10.1016/j.placenta.2017.02.007
Mossman, H. W. (1937). The comparative morphogenesis of the fetal membranes and accessory uterine structures. Contributions to Embryology, 26, 129.
Neitzke, U., Harder, T., Schellong, K., Melchior, K., Ziska, T., Rodekamp, E., … Plagemann, A. (2008). Intrauterine growth restriction in a rodent model and developmental programming of the metabolic syndrome: a critical appraisal of the experimental evidence. Placenta, 29(3), 246-254. https://doi.org/10.1016/j.placenta.2007.11.014
Niklaus, A. L., Murphy, C. R., & Lopata, A. (1999). Ultrastructural studies of glycan changes in the apical surface of the uterine epithelium during pre-ovulatory and pre-implantation stages in the marmoset monkey. Anatomical Record, 255(3), 241-251.
Öner, H., Öner, J., & Demir, R. (2010). Distributions of PCNA and Cas-3 in rat uterus during early pregnancy. Folia Histochemica et Cytobiologica, 48(1), 71-77. https://doi.org/10.2478/v10042-008-0088-2
Pearson, O. P. (1949). Reproduction of a South American rodent, the mountain viscacha. American Journal of Anatomy, 84, 143-174. https://doi.org/10.1002/aja.1000840105
Raheem, K. A. (2018). Cytokines, growth factors and macromolecules as mediators of implantation in mammalian species. International Journal of Veterinary Science and Medicine, 6, S6-S14. https://doi.org/10.1016/j.ijvsm.2017.12.001
Red-Horse, K., Zhou, Y., Genbacev, O., Prakobphol, A., Foluk, R., McMaster, M., & Fischer, S. J. (2004). Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. Journal of Clinical Investigation, 114(6), 744-754. https://doi.org/10.1172/JCI22991
Rexroad, C. E., & Guthrie, H. D. (1983). Alpha-adrenergic receptors in myometrium of pregnant and nonpregnant pigs until day 19 postestrus. Biology of Reproduction, 29(3), 615-619. https://doi.org/10.1095/biolreprod29.3.615
Roberts, C., & Weir, B. J. (1973). Implantation in the plains viscacha, Lagostomus maximus. Journal of Reproduction and Fertility, 33(2), 299-307. https://doi.org/10.1530/jrf.0.0330299
Roberts, C., & Perry, J. S. (1974). Hystricomorph embryology. Symposia of Zoological Society of London, 34, 333-360.
Salamonsen, L. A., Edgell, T., Rombaust, L. J., Stephens, A. N., Robertson, D. M., Rainczuk, A., … Hannan, N. J. (2013). Proteomics of the human endometrium and uterine fluid: a pathway to biomarker discovery. Fertility and Sterility, 99(4), 1086-1092. https://doi.org/10.1016/j.fertnstert.2012.09.013
Sandow, B. A., West, N. B., Norman, R. L., & Brenner, R. M. (1979). Hormonal control of apoptosisin hamster uterine luminal epithelium. American Journal of Anatomy, 156(1), 15-36. https://doi.org/10.1002/aja.1001560103
Santelices Iglesias, O. A. (2019). Caracterización de sarcomas felinos en sitios de inoculación vacunal en la República Argentina. PhD Thesis, Universidad Nacional de La Plata, La Plata, Argentina.
Sato, T., Fukazawa, Y., Kojima, H., Enari, M., Iguchi, T., & Ohta, Y. (1997). Apoptotic cell death during the estrous cycle in the rat uterus and vagina. Anatomical Record, 248(1), 76-83.
Saunders, P. T. K. (2005). Does estrogen receptor b play a significant role in human reproduction? Trends in Endocrinology and Metabolism, 16(5), 222-227. https://doi.org/10.1016/j.tem.2005.05.006
Simmen, R. C. M., & Simmen, F. A. (1990). Regulation of uterine and conceptus secretory activity in the pig. Journal of Reproduction and Fertility Supplement, 40, 279-292.
Słomczyńska, M., & Woźniak, J. (2000). Differential distribution of estrogen receptor-beta and estrogen receptor-alpha in the porcine ovary. Experimental and Clinical Endocrinology and Diabetes, 109(4), 238-244. https://doi.org/10.1055/s-2001-15112
Spencer, T. E. (2014). Biological roles of uterine glands in pregnancy. Seminars in Reproductive Medicine, 32(5), 346-357. https://doi.org/10.1055/s-0034-1376354
Spencer, T. E., Kelleher, A. M., & Bartol, F. F. (2019). Development and fuction of uterine glands in domestic animals. Annual Review of Animal Bioscience, 7, 125-147. https://doi.org/10.1146/annurev-animal-020518-115321
Stenhouse, C., Hogg, C. O., & Ashworth, C. J. (2018). Association between fetal size, sex and both proliferation and apoptosis at the porcine feto-maternal interface. Placenta, 70, 15-24. https://doi.org/10.1016/j.placenta.2018.08.006
Stenhouse, C., Hogg, C. O., & Ashworth, C. J. (2019a). Association on foetal size and sex with porcine foeto-maternal interface integrin expression. Reproduction, 157(4), 317-328. https://doi.org/10.1530/REP-18-0520
Stenhouse, C., Hogg, C. O., & Ashworth, C. J. (2019b). Novel relationships between porcine fetal size, sex, and endometrial angiogenesis. Biology of Reproduction, 101(1), 112-125. https://doi.org/10.1093/biolre/ioz068
Stewart, M. D., Johnson, G. A., Gray, C. A., Burghardt, R. C., Schuler, L. A., Joyce, M. M., … Spencer, T. E. (2000). Prolactin receptor and UTMP expression in the ovine endometrium during the estrous cycle and pregnancy. Biology of Reproduction, 62(6), 1779-1789. https://doi.org/10.1095/biolreprod62.6.1779
Sukjumlong, S., Kaeoket, K., Dalim, A. M., & Persson, E. (2004). Immunohistochemical studies on oestrogen receptor alpha (ERα) and the proliferative marker Ki-67 in the sow uterus at oestrus and early pregnancy. Reproduction in Domestic Animals, 38(1), 361-369. https://doi.org/10.1046/j.1439-0531.2003.00383.x
Suvarna, K., Layton, C., & Bancroft, J. D. (2018). Bancroft's theory and practice of histological techniques (8th ed.). Amsterdam: Elsevier Ltd.
Tano de la Hoz, M. F., Flamini, M. A., Zanuzzi, C. N., & Díaz, A. O. (2017). The colonic groove of the plains viscacha (Lagostomus maximus): histochemical evidence of an abrupt change in the glycosylation pattern of goblet cells. Journal of Morphology, 278(12), 1606-1618. https://doi.org/10.1002/jmor.20735
Tayade, C., Black, G. P., Fang, Y., & Croy, B. A. (2006). Differential gene expression in endometrium, endometrial lymphocytes, and trophoblasts during successful and abortive embryo implantation. Journal of Immunology, 176(1), 148-156. https://doi.org/10.4049/jimmunol.176.1.148
Tayade, C., Fang, Y., Hilchie, D., & Croy, B. A. (2007). Lymphocyte contributions to altered endometrial angiogenesis during early and midgestation fetal loss. Journal of Leukocite Biology, 82(4), 877-886. https://doi.org/10.1189/jlb.0507330
Torry, R. J., & Rongish, B. J. (1992). Angiogenesis in the uterus: potential regulation and relation to tumor angiogenesis. American Journal of Reproductive Immunology, 27(3-4), 171-179. https://doi.org/10.1111/j.1600-0897.1992.tb00746.x
Torry, D. S., Leavenworth, J., Chang, M., Maheshwari, V., Groesch, K., Ball, E. R., & Torry, R. J. (2007). Angiogenesis in implantation. Journal of Assisted Reproduction and Genetics, 24(7), 303-315. https://doi.org/10.1007/s10815-007-9152-7
Van der Horst, C. J., & Gillman, J. (1941). The numbers of eggs and surviving embryos in Elephantulus. Anatomical Record, 80(4), 443-452. https://doi.org/10.1002/ar.1090800406
Van der Weijden, V. A., Bick, J. T., Bauersachs, S., Arnold, G. J., Fröhlich, T., Drews, B., & Ulbrich, S. E. (2019). Uterine fluid proteome changes during diapause and resumption of embryo development in roe deer (Capreolus capreolus). Reproduction, 158, 13-24. https://doi.org/10.1530/REP-19-0022
Vanroose, G., de Kruif, A., & Van Soon, A. (2000). Embryonic mortality and embryo-pathogen interactions. Animal Reproduction Science, 60, 131-143. https://doi.org/10.1016/s0378-4320(00)00098-1
Vuguin, P. M. (2007). Animal models for small for gestational age and fetal programming of adult disease. Hormone Research, 68(3), 113-123. https://doi.org/10.1159/000100545
Wang, H., & Dey, S. K. (2006). Roadmap to embryo implantation: clues from mouse models. Nature Reviews Genetic, 7(3), 185-199. https://doi.org/10.1038/nrg1808
Weir, B. J. (1971a). The reproductive physiology of the plains viscacha, Lagostomus maximus. Journal of Reproduction and Fertility, 25(3), 355-363. https://doi.org/10.1530/jrf.0.0250355
Weir, B. J. (1971b). The reproductive organs of the female plains viscacha, Lagostomus maximus. Journal of Reproduction and Fertility, 25(3), 365-373. https://doi.org/10.1530/jrf.0.0250365
Weir, B. J. (1971c). Some notes on reproduction in the Patagonian Mountain viscacha, Lagidium boxi (Mammalia: Rodentia). Journal of Zoology, 164(4), 463-467. https://doi.org/10.1111/j.1469-7998.1971.tb01330.x
Weir, B. J. (1974). Reproductive characteristics of hystricomorph rodents. In I. W. Rowlands & B. J. Weir (Eds.), The biology of hystricomorph rodents (pp. 265-301). New York: Academic Press.
Wright, E. C., Miles, J. R., Lents, C. A., & Rempel, L. A. (2016). Uterine and placental characteristics during early vascular development in the pig from day 22 to 42 of gestation. Animal Reproduction Science, 164, 14-22. https://doi.org/10.1016/j.anireprosci.2015.11.002
Wooding, P., & Burton, G. (2008). Comparative placentation structures, functions and evolution. Germany: Springer.
Wigglesworth, J. S. (1964). Experimental growth retardation in the foetal rat. Journal of Pathology and Bacteriology, 88, 1-13. https://doi.org/10.1002/path.1700880102
Woudwyk, M. A., Zanuzzi, C. N., Nishida, F., Gimeno, E. J., Soto, P., Monteavaro, C. E., & Barbeito, C. G. (2015). Apoptosis and cell proliferation in the mouse model of embryonic death induced by Tritrichomonas foetus infection. Experimental Parasitology, 156, 32-36. https://doi.org/10.1016/j.exppara.2015.05.013
Zara, J. L. (1973). Breeding and husbandry of the capybara, Hydrochoerus hydrochaeris, at Evansville. International Zoo Yearbook, 13(1), 137-139. https://doi.org/10.1111/j.1748-1090.1973.tb02128.x
Zhang, S., Lin, H., Kong, S., Wang, S. E., Wang, H., Wang, H., & Armant, D. R. (2013). Physiological and molecular determinants of embryo implantation. Molecular Aspects of Medicine, 34(5), 939-980. https://doi.org/10.1016/j.mam.2012.12.011